

CONFIDENTIAL REPORT

Work Location:	Lucideon UK
Purchase Order No.:	CW/Loxwood
Report Date:	27 October, 2017
Author(s):	Dr Richard White
For the Attention of:	Mr. Chris Williamson
Client:	Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT
Project Title:	Initial Evaluation of Clay Deposits for Potential use as Brick Clay
Lucideon Reference:	173136 (QT-44821/2/KNA)/Ref. 1

Mrs Sharon Mansfield Testing Team Reviewer

Dr Richard White Testing Team Project Manager

Page 1 of 12

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) teste No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications.

Lucideon Limited Queens Road, Penkhull Stoke-on-Trent Staffordshire ST4 7LQ

SUMMARY

Protreat Ltd are evaluating a Weald clay deposit from South East Sussex. Composite samples were prepared from two of the borehole samples. These samples were subjected to some initial tests to assess whether they have potential as a brick clay and to collect some base information.

The four composite core samples produce brick like material upon firing. Two sample were classic brick red, two were somewhat darker in colour. Two samples; 1B & 1C and 5A & 5B contain higher concentrations of iron and appear to be over fired at the trial firing temperature of 1060°C. All samples exhibit a degree of soluble salt formation upon firing.

CONTENTS Page 2 SUMMARY **1 INTRODUCTION** 4 2 EXPERIMENTAL 4 2.1 **Visual Examination of Clay Samples Supplied** 4 2.2 **Particle Size Distribution** 4 2.3 **Chemical Composition by XRF** 4 2.4 **Total Carbon and Sulphur** 4 2.5 **Fired Appearance** 5 **3 RESULTS & INTERPRETATION** 5 3.1 **Visual Examination of Clay Samples Supplied** 5 5 3.1.1 Borehole 1A & 1B Composite 3.1.2 Borehole 1C & 1D Composite 5 3.1.3 Borehole 5A & 5B Composite 5 3.1.4 Borehole 5C & 5D Composite 5 3.2 **Particle Size Distribution** 5 3.3 **Chemical Composition by XRF** 6 3.4 **Total Carbon and Sulphur** 7 3.5 7 **Fired Appearance** 7 3.5.1 Borehole 1A & 1B Composite 3.5.2 Borehole 1C & 1D Composite 9 3.5.3 Borehole 5A & 5B Composite 10 3.5.4 Borehole 5C & 5D Composite 11 **4** CONCLUSIONS 12

APPENDIX – Test Certificates

Protreat Ltd are evaluating a clay deposit from South East Sussex. The site is located at Loxwood and is stratigraphically located in the Weald Clay.

Four composite samples were prepared from two of the borehole samples. These samples were subjected to some initial tests to assess whether they have potential as a brick clay and to collect some base information.

The current work forms the initial stage of an examination and includes chemical analysis by XRF and Leco carbon, sulphur analysis, particle size and fired appearance.

2 EXPERIMENTAL

2.1 Visual Examination of Clay Samples Supplied

The clay samples were supplied as core samples. Composite samples were prepared from the cores by taking small subsections sufficient to ensure that approximately 50% of the material was included within the sample.

The samples were ground in to a format that would be equivalent to a brick clay during use. This was taken as the primary bulk sample.

2.2 Particle Size Distribution

A representative sample of the clay powder was added to the wet dispersion unit of a Malvern Mastersizer 3000 running with water to which had been added an admixture to aid particle dispersion. The dispersion process was further aided by the use of the machines in-built ultrasound for a suitable period of time followed by a short period afterwards to allow the system to settle before taking particle size distribution readings.

2.3 Chemical Composition by XRF

A representative sample of each material was chemically analysed using X-ray fluorescence (XRF) analysis. This technique gives information concerning the chemical compositional make-up of the sample.

A fully quantitative mode was used on the sample, whereby the material was ground to a fine powder to homogenise it, then ignited at 1025 °C and then fused with lithium borate to form a homogenous glass bead. The analysis was performed on the bead using a Panalytical Axios wavelength dispersive XRF Spectrometer. The method used was in-house Method C201, which is based on BS EN ISO 12677:2011.

2.4 Total Carbon and Sulphur

Total carbon and sulphur in the clay samples were determined on a representative subsample of the material provided. The material is ground and homogenised and dried at 110 °C. The ground material is mixed with a catalyst and pyrolysed in a Leco Carbon Sulphur analyser. Carbon is converted to CO and CO₂, sulphur is converted to SO₂ and SO₃, the quantities of the resulting gases are determined using Infrared detection and converted to initial carbon and sulphur content.

2.5 Fired Appearance

Clay as received was wetted to form a thick clay mix, this was hand-pressed to form briquettes. Any visible organic debris was removed prior to pressing. These briquettes were air dried and then fired at 1060 °C to mimic a typical brick firing. The firing schedule was such that the heating stage was some seven hours with a 16 hour soak at temperature.

Once fired the briquettes were examined and photographed to assess the fired colour and body texture.

3 RESULTS & INTERPRETATION

3.1 Visual Examination of Clay Samples Supplied

The following was noted for each of the four clay samples submitted.

3.1.1 Borehole 1A & 1B Composite

The material was a silty clay with a greyish colour. Once wetted, the material was very plastic in nature. There was no obvious occurrence of entrained coarser mineral matter.

3.1.2 Borehole 1C & 1D Composite

The material was a silty clay with a greyish colour. Once wetted, the material was very plastic in nature. There was no obvious occurrence of entrained coarser mineral matter.

3.1.3 Borehole 5A & 5B Composite

The material was a silty clay with a greyish colour. Once wetted, the material was very plastic in nature. There was no obvious occurrence of entrained coarser mineral matter.

3.1.4 Borehole 5C & 5D Composite

The material was a silty clay with a greyish colour. Once wetted, the material was very plastic in nature. There was no obvious occurrence of entrained coarser mineral matter.

3.2 Particle Size Distribution

Particle size distribution was determined using Malvern laser particle sizing of the dispersed material. Samples were dispersed in water.

All the samples were found to be bimodal in size distribution with peaks at approximately 0.87 μ m and 4.03 μ m. Foe each sample the D₁₀, D₅₀ and D₉₀ values are provided along with the percentage of material exceeding 100 μ m in size.

Results of particle sizing are tabulated below (Table 1), the full results are appended in the attached Appendices.

Reference	(173136)-23456	(173136)-23457	(173136)-23458	(173136)-23459
Mark	Borehole 1A & 1B Composite	Borehole 1C & 1D Composite	Borehole 5A & 5B Composite	Borehole 5C & 5D Composite
D ₁₀	1.20 µm	1.23 µm	1.14 µm	1.27 µm
D ₅₀	4.65 µm	5.10 µm	4.29 µm	5.36 µm
D ₉₀	21.1 µm	24.7 µm	15.2 µm	27.9 µm
Bimodal 1	0.87 µm	0.87 µm	0.87 µm	0.87 µm
Bimodal 2	4.03 µm	3.79 µm	4.03 µm	4.03 µm
% > 100 µm	0.73%	0.67%	0.31%	0.76%

Table 1 – Particle Size Distribution Data Summary for Composite Samples

3.3 Chemical Composition by XRF

Results of XRF analysis and loss on ignition at 1025°C to BS EN ISO 12677:2011 are tabulated below in Table 2 with the certificate of analysis reproduced in the Appendix.

Reference	(173136)-23456	(173136)-23457	(173136)-23458	(173136)-23459
Mark	Borehole 1A & 1B Composite	Borehole 1C & 1D Composite	Borehole 5A & 5B Composite	Borehole 5C & 5D Composite
SiO ₂	60.25	55.73	53.43	63.35
TiO ₂	1.07	1.00	1.07	1.22
Al ₂ O ₃	20.15	17.38	21.26	18.24
Fe ₂ O ₃	7.15	8.76	9.05	6.30
CaO	4.67	2.75	1.37	0.65
MgO	1.54	1.22	1.37	0.95
K ₂ O	2.92	2.39	2.57	2.18
Na ₂ O	0.33	0.27	0.19	0.16
P_2O_5	0.11	0.14	0.13	0.06
Cr ₂ O ₃	0.02	0.01	0.02	0.02
Mn ₃ O ₄	0.11	0.42	0.28	0.09
ZrO ₂	0.03	0.03	0.03	0.04
HfO ₂	< 0.01	< 0.01	< 0.01	< 0.01
PbO	< 0.02	< 0.02	0.04	< 0.02
ZnO	0.01	0.01	0.01	0.01
BaO	0.05	0.04	0.05	0.05
SrO	0.02	0.02	0.02	0.01
SnO ₂	< 0.01	< 0.01	< 0.01	< 0.01
CuO	0.01	< 0.01	0.01	< 0.01
Loss	0.92	9.09	9.09	6.12
Total	99.33	99.26	99.99	99.45
SO ₃	< 0.05	< 0.05	< 0.05	< 0.05

Table 2 - XRF Composition of Clay Samples Provided

3.4 Total Carbon and Sulphur

Results of Leco total carbon and sulphur are tabulated below in Table 3 with the certificate of analysis reproduced in the Appendix.

Reference	(173136)-23456	(173136)-23457	(173136)-23458	(173136)-23459
Mark	Borehole 1A & 1B Composite	Borehole 1C & 1D Composite	Borehole 5A & 5B Composite	Borehole 5C & 5D Composite
Total C	0.98	1.29	1.02	0.34
Total S	0.04	0.05	0.12	0.16
Total S as SO ₃	0.11	0.13	0.31	0.39

Table 3 - Total Carbon and Sulphur Contents of Clay Samples Provided

3.5 Fired Appearance

The following observations were made before and after firing at 1060 °C. A firing temperature of 1060 °C was selected as this is typical of brick firing conditions. Briquettes were fired with a 16 hour soak time and allowed to cool slowly to avoid cracking. Briquettes were examined after drying and after firing.

3.5.1 Borehole 1A & 1B Composite

The unfired material (Figure 1) was a straw buff colour with a smooth even surface, indicative a fine particle size, free of coarse material. There was some evidence of cracking on drying of the material.

After firing (Figure 2), the briquette changed to a classic red brick coloured material. There was no evidence of any lime blow associated with the brick. Some white soluble salts were noted that were thought to be calcium sulphate based. The brick gave a sharp ring, indicative of a well bonded structure without significant cracking.

A freshly fractured face through the fired material showed that it was fairly dense with an even structure and moderate vitrification. The red colour indicated that the full oxidation of the structure had taken place during firing. The body contained dispersed white mineral fragments through the structure. The brick was strong with no observed shrinkage cracks.

Confidential Report: 173136/Ref. 1

Figure 1 - Composite Borehole Sample 1A + 1B Briquettes before Firing

Figure 2 - Composite Borehole Sample 1A + 1B Briquettes Post Firing

The unfired material (Figure 3) was a brownish-buff colour with a slightly rough surface texture. Some cracking due to drying shrinkage was noted.

After firing (Figure 4), the briquette changed to a dark reddish-brown coloured material. There was no evidence of any lime blow associated with the brick. Some white soluble salts were noted that were thought to be calcium sulphate based. The brick gave a sharp ring, indicative of a well bonded structure without significant cracking.

Examination of a freshly fractured face through the fired material showed that it was very dense, with a significant glass content. The body was dark brown with black coloured particles within the body. The body would appear to have remained in a reduced state during firing. The body had very high strength due to the high degree of vitrification.

Figure 3 - Composite Borehole Sample 1C + 1D Briquettes before Firing

Figure 4 - Composite Borehole Sample 1C + 1D Briquettes after Firing

The unfired material (Figure 5) was a greyish-buff colour with a slightly coarse textured surface. There was no evidence of cracking due to drying observed.

After firing (Figure 6), the briquette changed to a dark reddish-brown coloured material. There was no evidence of any lime blow associated with the brick. Some white soluble salts were noted that were thought to be calcium sulphate based. The brick gave a sharp ring, indicative of a well bonded structure without significant cracking.

A freshly fractured face through the fired material showed that the material was extremely dense and vitrified. The body colour was dark brown with a very dark core. The material was of high strength due to the degree of vitrification. The body structure appeared to be over-fired at 1060°C.

Figure 5 - Composite Borehole Sample 5A + 5B Briquettes before Firing

Figure 6 - Composite Borehole Sample 5A + 5B Briquettes after Firing

The unfired material (Figure 7) was a greyish-buff colour with a smooth even surface. Some cracking due to drying shrinkage was noted.

After firing (Figure 8), the body became a reddish brown colour. There was no evidence of any lime blow associated with the brick. Some white soluble salts were noted that were thought to be calcium sulphate based. The brick gave a sharp ring, indicative of a well bonded structure without significant cracking.

Examination of a freshly fractured face through the fired material showed that it was a porous open structured material with a good degree of vitrification. The developed colour through the body was an even reddish brown indicating that it had been fully oxidised. The brick appeared to be of good strength.

Figure 7 - Composite Borehole Sample 5C + 5D Briquettes before Firing

Figure 8 - Composite Borehole Sample 5C + 5D Briquettes after Firing

The four composite core samples were of silty clay with a chemistry consistent with a brick clay.

On firing at 1060 °C, all the samples exhibited a change to a reddish brown. Two of the samples Core 1A & 1B and Core 5C & 5D were a classic brick red colour. The remaining two samples were significantly darker coloured.

The fired strength of the briquettes would appear to be sufficient for manufacture of bricks.

Upon firing, composite core samples 1B & 1C and 5A & 5B were darker in colour with an indication of black coring having taken place. The degree of vitrification was greater than for the other samples with noticeable over firing of samples 5A & 5B.

From the chemistry, the firing behaviour would appear to be the result of the greater concentrations of iron and manganese.

All samples exhibited a degree of soluble salt formation, presumably due to water soluble sulphate.

PHYSICAL TESTING ANALYSIS REPORT

Description:	Determination of Particle Size Distribution
Test Method:	In House Method PT55
Lucideon Reference:	(173136)-29481
Client:	Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT
For the Attention of:	Mr. Chris Williamson
Date Logged:	13-Jul-2017
Date of Tests:	29-Sep-2017 to 04-Oct-2017
Report Date:	04-Oct-2017
Purchase Order No.:	CW/Loxwood

Please find attached the results for the sample(s) recently submitted for analysis.

Miss Zoe Kinally Manager

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications.

Page 1 of 3

Lucideon Analysis Report

Created by: burton Last edited: 12/09/2017 09:04:53

0.0679

0.0771

0.00

0.00

0.594

0.675

0.48

1.45

5.21

5.92

54.25

58.88

		Sample Nam	(173136)-	29481 Protreat	Ltd - Loxwood	Clay	Mea	asurement D	ate Time ^{03/}	10/2017 16:50):22	
			Pit - Boreh	nole 1A & 1B Co	omposite		Med			10/2017 14-22		
		SOP File Nam	e Burton Be HydroFV o	fa				Analysis D Resu	ate Lime 04/ It Source Edi	10/2017 14:22 ted	2:22	
		SOF The Nan	le Hydrocv.c					Resu				
alysis							_					
	Л	Particle Nam	ne China Clay	(RI 1.555)			Part	cicle Refracti	ve Index 1.5	55 30		
	Particle Al	sorption Inde	ex 0.100				Dispers	Laser Ob	scuration 19.	30 13 %		
	We	ighted Residu	al 1.17 %					Scatteri	ng Model Mie	2		
		Analysis Mod	el General P	urpose				Analysis S	ensitivity Nor	rmal		
ult												
		Concentratio	on 0.0080 %						Span 4.2	75		
		Uniformi	ty 1.565					Res	sult Units Vol	ume		
	Speci	fic Surface Are	ea 2014 m²/l	kg					Dv (10) 1.2	0 µm		
		D [3,2	2] 2.98 µm						Dv (50) 4.6	5 µm		
		D [4,3	3] 9.67 µm						Dv (90) 21.	ıμm		
				l l	requency (co	ompatible) a	nd Undersize					
	6.0										100.0	
	6.0				\sim							
						\land						
(%)	4.0					Λ						e (%
sity												un
Den					/ /						-50.0	e Vo
Ime				1								lativ
Volt	2.0											nmu
							\mathbf{X}					0
	0.0								 	 _ , , ,	0.0	
	0.01		0.1	1.0		10.0	10	0.00	1,000.0		10,000.0	
					Siz	ze Classes (µn	ı)					
			[Frequen	cy] - [16] (17313	6)-29481 Protrea	at Ltd [L	ndersize] - [16]	(173136)-2948	1 Protreat Ltd -			
			Composit	a Clay Pit - Boren æ-03/10/2017 16:	:50:22		mposite-03/10/2	2017 16:50:22	IB			
(µm) % \	/olume Under	Size (µm) % Vo	olume Under	Size (µm) % V	olume Under	Size (µm) % V	olume Under	Size (µm) % \	/olume Under	Size (µm) % \	Volume Under	
.0100	0.00	0.0876	0.00	0.767	2.95	6.72	63.31	58.9	97.59	516	100.00	
0129	0.00	0.0995	0.00	0.072	6.84	7.0 4 8.68	71.40	76.0	98.52	666	100.00	
-	0.00	0.128	0.00	1.13	8.89	9.86	74.99	86.4	98.92	756	100.00	
0147	0.00	0.146	0.00	1.28	10.98	11.2	78.27	98.1	99.27	859	100.00	
0147 0167		0.166	0.00	1.45	13.25	12.7	81.22	111	99.55	976	100.00	
.0147 .0167 .0189	0.00	0.100		1.65	15.85	14.5	83.87	127	99.76	1110	100.00	
0147 0167 0189 0215 0244	0.00	0.188	0.00	1 88	18 80	16.4	86.77			1260	1001001	
0147 0167 0189 0215 0244 0278	0.00 0.00 0.00 0.00	0.188 0.214 0.243	0.00	1.88 2.13	18.89 22.41	16.4 18.7	86.22	163	100.00	1260 1430	100.00	
0147 0167 0189 0215 0244 0278 0315	0.00 0.00 0.00 0.00 0.00	0.188 0.214 0.243 0.276	0.00 0.00 0.00 0.00	1.88 2.13 2.42	18.89 22.41 26.35	16.4 18.7 21.2	86.22 88.29 90.09	163 186	100.00 100.00	1260 1430 1630	100.00 100.00 100.00	
0147 0167 0189 0215 0244 0278 0315 0358	0.00 0.00 0.00 0.00 0.00 0.00	0.188 0.214 0.243 0.276 0.314	0.00 0.00 0.00 0.00 0.00	1.88 2.13 2.42 2.75	18.89 22.41 26.35 30.63	16.4 18.7 21.2 24.1	86.22 88.29 90.09 91.65	163 186 211	100.00 100.00 100.00	1260 1430 1630 1850	100.00 100.00 100.00 100.00	
0147 0167 0189 0215 0244 0278 0315 0358 0407	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.188 0.214 0.243 0.276 0.314 0.357	0.00 0.00 0.00 0.00 0.00 0.00	1.88 2.13 2.42 2.75 3.12	18.89 22.41 26.35 30.63 35.17	16.4 18.7 21.2 24.1 27.4	86.22 88.29 90.09 91.65 92.98	144 163 186 211 240	100.00 100.00 100.00 100.00	1260 1430 1630 1850 2100	100.00 100.00 100.00 100.00	
0147 0167 0189 0215 0244 0278 0315 0358 0407 0463 0556	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.188 0.214 0.243 0.276 0.314 0.357 0.405	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.88 2.13 2.42 2.75 3.12 3.55	18.89 22.41 26.35 30.63 35.17 39.88	16.4 18.7 21.2 24.1 27.4 31.1	86.22 88.29 90.09 91.65 92.98 94.10	163 186 211 240 272	100.00 100.00 100.00 100.00 100.00	1260 1430 1630 1850 2100 2390	100.00 100.00 100.00 100.00 100.00	

45.6

51.8

96.48

97.06

400

454

100.00

100.00

3500

100.00

Size (µm)	% Volume In	Size (µm) %	b Volume In	Size (µm) %	Volume In								
0.0100	0.00	0.0679	0.00	0.460	0.07	3.12	4.71	21.2	1.56	144	0.09	976	0.00
0.0114	0.00	0.0771	0.00	0.523	0.42	3.55	4.80	24.1	1.33	163	0.00	1110	0.00
0.0129	0.00	0.0876	0.00	0.594	0.96	4.03	4.82	27.4	1.12	186	0.00	1260	0.00
0.0147	0.00	0.0995	0.00	0.675	1.50	4.58	4.76	31.1	0.93	211	0.00	1430	0.00
0.0167	0.00	0.113	0.00	0.767	1.87	5.21	4.63	35.3	0.78	240	0.00	1630	0.00
0.0189	0.00	0.128	0.00	0.872	2.02	5.92	4.43	40.1	0.67	272	0.00	1850	0.00
0.0215	0.00	0.146	0.00	0.991	2.05	6.72	4.19	45.6	0.59	310	0.00	2100	0.00
0.0244	0.00	0.166	0.00	1.13	2.09	7.64	3.90	51.8	0.53	352	0.00	2390	0.00
0.0278	0.00	0.188	0.00	1.28	2.27	8.68	3.59	58.9	0.49	400	0.00	2710	0.00
0.0315	0.00	0.214	0.00	1.45	2.60	9.86	3.28	66.9	0.45	454	0.00	3080	0.00
0.0358	0.00	0.243	0.00	1.65	3.04	11.2	2.96	76.0	0.40	516	0.00	3500	
0.0407	0.00	0.276	0.00	1.88	3.51	12.7	2.65	86.4	0.34	586	0.00		
0.0463	0.00	0.314	0.00	2.13	3.94	14.5	2.35	98.1	0.28	666	0.00		
0.0526	0.00	0.357	0.00	2.42	4.28	16.4	2.07	111	0.21	756	0.00		
0.0597	0.00	0.405	0.00	2.75	4.54	18.7	1.81	127	0.15	859	0.00		

PHYSICAL TESTING ANALYSIS REPORT

Description:	Determination of Particle Size Distribution
Test Method:	In House Method PT55
Lucideon Reference:	(173136)-29482
Client:	Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT
For the Attention of:	Mr. Chris Williamson
Date Logged:	13-Jul-2017
Date of Tests:	29-Sep-2017 to 04-Oct-2017
Report Date:	04-Oct-2017
Purchase Order No.:	CW/Loxwood

Please find attached the results for the sample(s) recently submitted for analysis.

Miss Zoe Kinally Manager

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications.

Lucideon Analysis Report

Created by: burton Last edited: 12/09/2017 09:04:53

Proheat Lt

Measuremer	nt Details											
			(173136)-	29482 Protreat	Ltd - Loxwood (Clav			<u>04</u> /	10/2017 10.03	3:25	
		Sample Nam	e Pit - Borel	hole 1C & 1D Co	omposite	ciuy	Mea	asurement D	ate Time	10/2017 10.0.	5.25	
		Operator Nam	e Burton					Analysis D	ate Time 04/	10/2017 14:25	5:29	
		SOP File Nam	e HydroEV.	cfg				Resu	It Source Edi	ted		
Analysis												
		Particle Nam	e China Cla	y (RI 1.555)			Part	ticle Refracti	ve Index 1.5	55		
	D	ispersant Nam	e Water				Dispers	ant Refracti	ve Index 1.3	30		
	Particle A	bsorption Inde	x 0.100					Laser Obs	curation 16.	31 %		
	We	ighted Residu	al 1.21 %					Scatteri	ng Model Mie	1		
		Analysis Mod	el General P	urpose				Analysis Se	ensitivity Nor	mal		
Result												
		Concentratio	n 0.0070 %						Span 4.6	09		
		Uniformit	y 1.589					Res	ult Units Vol	ume		
	Speci	fic Surface Are	a 1930 m ² /	kg					Dv (10) 1.2	3 µm		
		D [3,2	2] 3.11 µm						Dv (50) 5.1	0 µm		
		D [4,3] 10.6 µm						Dv (90) 24.	7 µm		
					Frequency (co	mpatible) a	nd Undersize	5				
	6.0										-100.0	
					\sim							
						\setminus /						
						\sim						(%
%) /	4.0					\wedge						ne (
Isity												olun
Der											-50.0	le V
Ime				_								lativ
Volt	2.0-						$\mathbf{\Lambda}$					nwr
												Ũ
	0.0			TTIM	1 1 1 1	пп		1 <u> </u>			TTT 0.0	
	0.01		0.1	1.0)	10.0	10	00.0	1,000.0		10,000.0	
					Size	e Classes (µr	n)					
			[Frequen	cy] - [26] (17313	6)-29482 Protreat	Ltd [Jndersize] - [26]	(173136)-29482	2 Protreat Ltd -			
			- Loxwoo	d Clay Pit - Boreh	nole 1C & 1D	— L	oxwood Clay Pit -	- Borehole 1C &	1D			
			Composit	10/2017 10	.03.23	C	omposite-04/10/2	2017 10.05.25				
2:												
Size (µm) % Vo		Size (µm) % Vo		Size (µm) % V		Size (μm) % \		Size (µm) % V		Size (µm) %		
0.0100	0.00	0.00/0	0.00	0.707	2.98 4.91	0.72 7.64	59.11 63.10	56.9 66.0	97.47 02 04	200	100.00	
0.0129	0.00	0.113	0.00	0.991	6.76	8.68	66.93	76.0	98.54	666	100.00	
0.0147	0.00	0.128	0.00	1.13	8.69	9.86	70.55	86.4	98.97	756	100.00	
0.0167	0.00	0.146	0.00	1.28	10.64	11.2	73.98	98.1	99.33	859	100.00	
0.0189	0.00	0.166	0.00	1.45	12.75	12.7	77.18	111	99.60	976	100.00	
0.0215	0.00	0.188	0.00	1.65	15.17	14.5	80.15	127	99.80	1110	100.00	
0.0244	0.00	0.214	0.00	1.88	18.02	16.4	82.89	144	99.93	1260	100.00	
0.0278	0.00	0.243	0.00	2.13	21.32	18.7	85.40	163	100.00	1430	100.00	
	1			2.42	25.03	21.2	87.65	186	100.00	1630	100.00	
0.0315	0.00	0.276	0.00						100.00			
0.0315	0.00	0.276	0.00	2.75	29.04	24.1	89.65	211	100.00	1850	100.00	
0.0315 0.0358 0.0407	0.00 0.00 0.00	0.276 0.314 0.357	0.00 0.00 0.00	2.75 3.12	29.04 33.26	24.1 27.4	89.65 91.39	211 240	100.00	1850 2100	100.00 100.00	
0.0315 0.0358 0.0407 0.0463 0.0526	0.00 0.00 0.00 0.00	0.276 0.314 0.357 0.405 0.460	0.00 0.00 0.00 0.00	2.75 3.12 3.55	29.04 33.26 37.60	24.1 27.4 31.1	89.65 91.39 92.89	211 240 272 310	100.00 100.00 100.00	1850 2100 2390	100.00 100.00 100.00	
0.0315 0.0358 0.0407 0.0463 0.0526 0.0597	0.00 0.00 0.00 0.00 0.00	0.276 0.314 0.357 0.405 0.460 0.523	0.00 0.00 0.00 0.00 0.00 0.00	2.75 3.12 3.55 4.03 4.58	29.04 33.26 37.60 42.00 46.39	24.1 27.4 31.1 35.3 40 1	89.65 91.39 92.89 94.15 95 20	211 240 272 310 352	100.00 100.00 100.00 100.00	1850 2100 2390 2710 3080	100.00 100.00 100.00 100.00	
0.0315 0.0358 0.0407 0.0463 0.0526 0.0597 0.0679	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.276 0.314 0.357 0.405 0.460 0.523 0.594	0.00 0.00 0.00 0.00 0.00 0.08 0.51	2.75 3.12 3.55 4.03 4.58 5.21	29.04 33.26 37.60 42.00 46.39 50.73	24.1 27.4 31.1 35.3 40.1 45.6	89.65 91.39 92.89 94.15 95.20 96.08	211 240 272 310 352 400	100.00 100.00 100.00 100.00 100.00 100.00	1850 2100 2390 2710 3080 3500	100.00 100.00 100.00 100.00 100.00 100.00	

Size (µm)	% Volume In	Size (µm) %	b Volume In	Size (µm) %	Volume In								
0.0100	0.00	0.0679	0.00	0.460	0.08	3.12	4.34	21.2	2.00	144	0.07	976	0.00
0.0114	0.00	0.0771	0.00	0.523	0.43	3.55	4.39	24.1	1.74	163	0.00	1110	0.00
0.0129	0.00	0.0876	0.00	0.594	0.98	4.03	4.39	27.4	1.49	186	0.00	1260	0.00
0.0147	0.00	0.0995	0.00	0.675	1.50	4.58	4.34	31.1	1.26	211	0.00	1430	0.00
0.0167	0.00	0.113	0.00	0.767	1.83	5.21	4.25	35.3	1.05	240	0.00	1630	0.00
0.0189	0.00	0.128	0.00	0.872	1.95	5.92	4.13	40.1	0.88	272	0.00	1850	0.00
0.0215	0.00	0.146	0.00	0.991	1.93	6.72	3.99	45.6	0.75	310	0.00	2100	0.00
0.0244	0.00	0.166	0.00	1.13	1.95	7.64	3.82	51.8	0.65	352	0.00	2390	0.00
0.0278	0.00	0.188	0.00	1.28	2.10	8.68	3.63	58.9	0.57	400	0.00	2710	0.00
0.0315	0.00	0.214	0.00	1.45	2.42	9.86	3.42	66.9	0.50	454	0.00	3080	0.00
0.0358	0.00	0.243	0.00	1.65	2.85	11.2	3.20	76.0	0.43	516	0.00	3500	
0.0407	0.00	0.276	0.00	1.88	3.30	12.7	2.97	86.4	0.35	586	0.00		
0.0463	0.00	0.314	0.00	2.13	3.70	14.5	2.74	98.1	0.27	666	0.00		
0.0526	0.00	0.357	0.00	2.42	4.01	16.4	2.50	111	0.20	756	0.00		
0.0597	0.00	0.405	0.00	2.75	4.22	18.7	2.25	127	0.13	859	0.00		

PHYSICAL TESTING ANALYSIS REPORT

Description:	Determination of Particle Size Distribution
Test Method:	In House Method PT55
Lucideon Reference:	(173136)-29483
Client:	Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT
For the Attention of:	Mr. Chris Williamson
Date Logged:	13-Jul-2017
Date of Tests:	29-Sep-2017 to 04-Oct-2017
Report Date:	04-Oct-2017
Purchase Order No.:	CW/Loxwood

Please find attached the results for the sample(s) recently submitted for analysis.

Miss Zoe Kinally Manager

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications.

Lucideon Analysis Report

Created by: burton Last edited: 12/09/2017 09:04:53

0.0771

0.00

0.675

1.69

5.92

sureme	nt Details											
		Sample Nam	ne (173136)-2 Pit - Boreh	29483 Protreat Iole 5A & 5B Co	Ltd - Loxwood	l Clay	Mea	surement D	ate Time ^{04/2}	10/2017 11:23	3:58	
		Operator Nam	1e Burton					Analysis D	ate Time 04/	10/2017 14:29	9:51	
		SOP File Nam	ne HydroEV.c	fg				Resu	t Source Edit	ed		
lysis												
		Particle Nam	1e China Clay	(RI 1.555)			Part	icle Refracti	ve Index 1.5	55		
	D	ispersant Nam	e Water				Dispers	ant Refracti	ve Index 1.33	30 10 0/		
	Particle Al We	ighted Residu	al 1.35 %					Scatteri	ng Model Mie	19 %		
		Analysis Mod	el General Pu	ırpose				Analysis Se	ensitivity Nor	mal		
sult												
		Concentratio	on 0.0062 %						Span 3.28	38		
		Uniformi	ty 1.179					Res	ult Units Volu	ume		
	Speci	fic Surface Are	ea 2146 m²/k	g					Dv (10) 1.14	1μm		
		D [3,2 D [4,3	2] 2.00 μm 3] 7.32 μm						Dv (90) 4.29 Dv (90) 15.2	2 μm		
										·		
					Frequency (c	ompatible) a	nd Undersize					
	8.0										L_100.0	
	6.0-				\sim							
(%) /						Х						0/ 0~
ensity	10-										-50.0	
le De	4.0										-50.0	9
Volun				~								-
-	2.0-											Ċ
							\backslash					
	0.0		· · · · ·						 		0.0	
	0.01		0.1	1.0)	10.0	10	0.0	1,000.0		10,000.0	
					Si	ize Classes (µn	ı)					
			[Frequence - Loxwood	cy] - [26] (17313 d Clay Pit - Boreh	6)-29483 Protrea nole 5A & 5B	at Ltd [L	ndersize] - [26] xwood Clay Pit -	(173136)-2948 Borehole 5A &	3 Protreat Ltd - 5B			
			Composite	e-04/10/2017 11	:23:58	Co	mposite-04/10/2	2017 11:23:58				
(µm) % V	olume Under	Size (µm) % Vo	olume Under	Size (µm) % V	olume Under	Size (µm) % V	olume Under	Size (µm) % V	olume Under	Size (µm) %	Volume Under	
.0100	0.00	0.0876	0.00	0.767	3.38	6.72	67.32	58.9	99.04	516	100.00	
.0129	0.00	0.113	0.00	0.872	5.44 7.61	8.68	75.99	76.0	99.20	666	100.00	
.0147	0.00	0.128	0.00	1.13	9.75	9.86	79.84	86.4	99.53	756	100.00	
.0167 .0189	0.00	0.146	0.00	1.28	11.90 14 23	11.2 12 7	83.31	98.1 111	99.69 99.82	859 976	100.00	
.0215	0.00	0.188	0.00	1.65	16.92	14.5	89.06	127	99.93	1110	100.00	
.0244	0.00	0.214	0.00	1.88	20.11	16.4	91.33	144	100.00	1260	100.00	
.0278	0.00	0.243	0.00	2.13	23.83	18.7 21.2	93.22	163 186	100.00	1430 1630	100.00	
.0358	0.00	0.314	0.00	2.42	32.61	24.1	95.98	211	100.00	1850	100.00	
.0407	0.00	0.357	0.00	3.12	37.46	27.4	96.91	240	100.00	2100	100.00	
0463	0.00	0.405	0.00	3.55	42.47	31.1	97.60	272	100.00	2390	100.00	
.0526 .0597	0.00	0.460	0.00	4.03 4.58	47.56 52.66	35.3 40.1	98.09	310 352	100.00	2/10 3080	100.00	
0.070	0.00	0.504	0.05	5.04					100.00			

51.8

98.88

454

100.00

at Ltd.mme

62.60

Size (µm)	% Volume In	Size (µm) %	b Volume In	Size (µm) %	Volume In								
0.0100	0.00	0.0679	0.00	0.460	0.09	3.12	5.01	21.2	1.22	144	0.00	976	0.00
0.0114	0.00	0.0771	0.00	0.523	0.49	3.55	5.09	24.1	0.93	163	0.00	1110	0.00
0.0129	0.00	0.0876	0.00	0.594	1.11	4.03	5.10	27.4	0.69	186	0.00	1260	0.00
0.0147	0.00	0.0995	0.00	0.675	1.69	4.58	5.03	31.1	0.49	211	0.00	1430	0.00
0.0167	0.00	0.113	0.00	0.767	2.06	5.21	4.91	35.3	0.35	240	0.00	1630	0.00
0.0189	0.00	0.128	0.00	0.872	2.17	5.92	4.72	40.1	0.25	272	0.00	1850	0.00
0.0215	0.00	0.146	0.00	0.991	2.14	6.72	4.48	45.6	0.19	310	0.00	2100	0.00
0.0244	0.00	0.166	0.00	1.13	2.15	7.64	4.19	51.8	0.16	352	0.00	2390	0.00
0.0278	0.00	0.188	0.00	1.28	2.32	8.68	3.85	58.9	0.16	400	0.00	2710	0.00
0.0315	0.00	0.214	0.00	1.45	2.69	9.86	3.47	66.9	0.16	454	0.00	3080	0.00
0.0358	0.00	0.243	0.00	1.65	3.19	11.2	3.08	76.0	0.16	516	0.00	3500	
0.0407	0.00	0.276	0.00	1.88	3.72	12.7	2.67	86.4	0.15	586	0.00		
0.0463	0.00	0.314	0.00	2.13	4.20	14.5	2.27	98.1	0.14	666	0.00		
0.0526	0.00	0.357	0.00	2.42	4.58	16.4	1.89	111	0.11	756	0.00		
0.0597	0.00	0.405	0.00	2.75	4.85	18.7	1.54	127	0.07	859	0.00		

PHYSICAL TESTING ANALYSIS REPORT

Description:	Determination of Particle Size Distribution
Test Method:	In House Method PT55
Lucideon Reference:	(173136)-29484
Client:	Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT
For the Attention of:	Mr. Chris Williamson
Date Logged:	13-Jul-2017
Date of Tests:	29-Sep-2017 to 04-Oct-2017
Report Date:	04-Oct-2017
Purchase Order No.:	CW/Loxwood

Please find attached the results for the sample(s) recently submitted for analysis.

Miss Zoe Kinally Manager

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications.

Lucideon Analysis Report

Created by: burton Last edited: 12/09/2017 09:04:53

0.0679

0.0771

0.00

0.00

0.594

0.675

0.48

1.41

5.21

5.92

easureme	ent Details											
		Sample Nar	ne (173136)-2 Pit - Boreh	29484 Protreat l	Ltd - Loxwood	d Clay	Меа	asurement D	ate Time ^{04/}	/10/2017 12:19	9:04	
		Operator Nar	ne Burton		poolee			Analysis D	ate Time 04/	/10/2017 14:3	1:39	
		SOP File Nar	ne HydroEV.c	fg				Resu	It Source Edi	ted		
alysis												
		Particle Nam	ne China Clay	(RI 1.555)			Part	icle Refracti	ve Index 1.5	55		
	D	ispersant Nan	ne Water				Dispers	ant Refracti	ve Index 1.3	30		
	Particle A	bsorption Ind	ex 0.100					Laser Obs	scuration 18.	51 %		
	we	Analysis Mod	iai 1.10 % Iel General Pi	irnose				Analysis S	ng Model Mie	: rmal		
		Analysis Hee						Analysis et				
sult		Concentratio	on 0.0083 %						Snan 49	59		
		Uniformi	ity 1.652					Res	ult Units Vol	ume		
	Speci	fic Surface Ar	ea 1862 m²/k	g					Dv (10) 1.2	7 µm		
	-	D [3,	. 2] 3.22 µm						Dv (50) 5.3	6 µm		
		D [4,	. 3] 11.5 µm						Dv (90) 27.	9 µm		
				F	reque <u>ncy (c</u>	ompatible) a	nd Un <u>dersize</u>					
	60-										-100.0	
	0.0											
						\setminus						
(%)	4.0-					X						e (%
sity												un
Den											-50.0	e Vo
amı				<u></u>	/ /		\mathbf{N}					lativ
Volt	2.0-											,umu
												0
	0.0		· · · · · · · · ·								0.0	
	0.01		0.1	1.0		10.0	10	0.0	1,000.0		10,000.0	
					S	ize Classes (µr	n)					
			[Frequence	y] - [26] (173136)-29484 Protre	at Ltd [l	Jndersize] - [26]	(173136)-2948	4 Protreat Ltd -			
			Composite	e-04/10/2017 12:	19:04	L	omposite-04/10/	- Borenole 5C & 2017 12:19:04	50			
e (µm) % \	Volume Under	Size (µm) % V	olume Under	Size (µm) % Vo	lume Under	Size (µm) % \	olume Under	Size (µm) % \	/olume Under	Size (µm) %	Volume Under	
).0114	0.00	0.0995	0.00	0.767	2.84 4.59	0.72 7.64	61.15	56.9 66.9	97.17	586	100.00	
0.0129	0.00	0.113	0.00	0.991	6.45	8.68	64.84	76.0	98.39	666	100.00	
0.0147	0.00	0.128	0.00	1.13	8.29	9.86	68.33	86.4	98.86	756	100.00	
0.0167	0.00	0.146	0.00	1.28	10.14	11.2	71.62	98.1	99.24	859	100.00	
0.0189 0.0215	0.00	0.166	0.00	1.45	12.14	12.7 14 5	74.74	111 127	99.54	976	100.00	
).0244	0.00	0.214	0.00	1.88	17.16	16.4	80.46	144	99,90	1260	100.00	
0.0278	0.00	0.243	0.00	2.13	20.31	18.7	83.07	163	100.00	1430	100.00	
0.0315	0.00	0.276	0.00	2.42	23.86	21.2	85.51	186	100.00	1630	100.00	
0.0358	0.00	0.314	0.00	2.75	27.73	24.1	87.74	211	100.00	1850	100.00	
0407	0.00	0.357	0.00	3.12	31.83	27.4	89.76	240	100.00	2100	100.00	
0.0107		0 405	· ·	3 6 6	76 00 1		A1 E3	272		1 2200	100 00 1	
).0463	0.00	0.405	0.00	3.55	36.08 40.41	31.1	91.53	272	100.00	2390	100.00	

45.6

51.8

49.04

53.23

400

454

100.00

100.00

3500

100.00

95.46

96.39

Size (µm)	% Volume In	Size (µm) %	o Volume In	Size (µm) %	o Volume In	Size (µm) %	Volume In						
0.0100	0.00	0.0679	0.00	0.460	0.07	3.12	4.25	21.2	2.24	144	0.09	976	0.00
0.0114	0.00	0.0771	0.00	0.523	0.41	3.55	4.33	24.1	2.01	163	0.00	1110	0.00
0.0129	0.00	0.0876	0.00	0.594	0.93	4.03	4.34	27.4	1.78	186	0.00	1260	0.00
0.0147	0.00	0.0995	0.00	0.675	1.43	4.58	4.29	31.1	1.53	211	0.00	1430	0.00
0.0167	0.00	0.113	0.00	0.767	1.75	5.21	4.19	35.3	1.30	240	0.00	1630	0.00
0.0189	0.00	0.128	0.00	0.872	1.86	5.92	4.05	40.1	1.10	272	0.00	1850	0.00
0.0215	0.00	0.146	0.00	0.991	1.84	6.72	3.88	45.6	0.92	310	0.00	2100	0.00
0.0244	0.00	0.166	0.00	1.13	1.85	7.64	3.69	51.8	0.78	352	0.00	2390	0.00
0.0278	0.00	0.188	0.00	1.28	2.00	8.68	3.49	58.9	0.66	400	0.00	2710	0.00
0.0315	0.00	0.214	0.00	1.45	2.30	9.86	3.30	66.9	0.56	454	0.00	3080	0.00
0.0358	0.00	0.243	0.00	1.65	2.71	11.2	3.12	76.0	0.47	516	0.00	3500	
0.0407	0.00	0.276	0.00	1.88	3.15	12.7	2.94	86.4	0.38	586	0.00		
0.0463	0.00	0.314	0.00	2.13	3.55	14.5	2.78	98.1	0.29	666	0.00		
0.0526	0.00	0.357	0.00	2.42	3.87	16.4	2.61	111	0.22	756	0.00		
0.0597	0.00	0.405	0.00	2.75	4.10	18.7	2.43	127	0.15	859	0.00		

Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT

FAO: Mr. Chris W	/illiamson		
Report of Tests or	: Loxwood Clay Pit		
Your Reference:	Borehole 1A & 1B Composite		
Lucideon Referen	ce: (173136)-29481		
Date Reported:	19-Sep-2017	Order Number:	CW/Loxwood
Date Logged:	13-Jul-2017	Date(s) of Test(s):	15-Sep-2017 to 16-Sep-2017

Determination of Total Carbon and Total Sulphur

Method C45

Result(s)		Units	
Total Carbon	С	%	0.98
Sulphur, Total	S	%	0.04
Sulphur, Total	SO3	%	0.11
Mean of Duplicate Determinations			Yes
Sample Basis			Dried 110 deg C
UKAS Accredited			Yes

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

End of Test Report

M. M.Barrel

Mrs Maxine Bowker Technician

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications. Lucideon Limited Queens Road, Penkhull Stoke-on-Trent Staffordshire ST4 7LQ

Page 1 of 1

Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT

FAO: Mr. Chris Will	amson		
Report of Tests on:	Loxwood Clay Pit		
Your Reference:	Borehole 1C & 1D Composite		
Lucideon Reference	: (173136)-29482		
Date Reported:	19-Sep-2017	Order Number:	CW/Loxwood
Date Logged:	13-Jul-2017	Date(s) of Test(s):	15-Sep-2017 to 16-Sep-2017

Determination of Total Carbon and Total Sulphur

Method C45

Result(s)		Units	
Total Carbon	С	%	1.29
Sulphur, Total	S	%	0.05
Sulphur, Total	SO3	%	0.13
Mean of Duplicate Determinations			Yes
Sample Basis			Dried 110 deg C
UKAS Accredited			Yes

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

End of Test Report

M. M.Barrel

Mrs Maxine Bowker Technician

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications. Lucideon Limited Queens Road, Penkhull Stoke-on-Trent Staffordshire ST4 7LQ Page 1 of 1

Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT

FAO: Mr. Chris Willi	amson		
Report of Tests on:	Loxwood Clay Pit		
Your Reference:	Borehole 5A & 5B Composite		
Lucideon Reference	: (173136)-29483		
Date Reported:	19-Sep-2017	Order Number:	CW/Loxwood
Date Logged:	13-Jul-2017	Date(s) of Test(s):	15-Sep-2017 to 16-Sep-2017

Determination of Total Carbon and Total Sulphur

Method C45

Result(s)		Units	
Total Carbon	С	%	1.02
Sulphur, Total	S	%	0.12
Sulphur, Total	SO3	%	0.31
Mean of Duplicate Determinations			Yes
Sample Basis			Dried 110 deg C
UKAS Accredited			Yes

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

End of Test Report

M. M.Barrel

Mrs Maxine Bowker Technician

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications. Lucideon Limited Queens Road, Penkhull Stoke-on-Trent Staffordshire ST4 7LQ Page 1 of 1

Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT

FAO: Mr. Chris Willi	amson		
Report of Tests on:	Loxwood Clay Pit		
Your Reference:	Borehole 5C & 5D Composite		
Lucideon Reference	: (173136)-29484		
Date Reported:	19-Sep-2017	Order Number:	CW/Loxwood
Date Logged:	13-Jul-2017	Date(s) of Test(s):	15-Sep-2017 to 16-Sep-2017

Determination of Total Carbon and Total Sulphur

Method C45

Result(s)		Units	
Total Carbon	С	%	0.34
Sulphur, Total	S	%	0.16
Sulphur, Total	SO3	%	0.39
Mean of Duplicate Determinations			Yes
Sample Basis			Dried 110 deg C
UKAS Accredited			Yes

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

End of Test Report

M. M.Barrel

Mrs Maxine Bowker Technician

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications. Lucideon Limited Queens Road, Penkhull Stoke-on-Trent Staffordshire ST4 7LQ Page 1 of 1

Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT

FAO: Mr. Chris Williamson

- Report of Tests on: Loxwood Clay Pit
- Your Reference: Borehole 1A & 1B Composite

20-Sep-2017

Lucideon Reference: (173136)-29481

Date Reported:

Date Logged: 13-Jul-2017

Order Number: Date(s) of Test(s):

CW/Loxwood 19-Sep-2017 to 19-Sep-2017

XRF Analysis

Methods C201 based on BSEN ISO 12677:2011

Result(s)		Units	
Sample Basis			Dried 110 deg C
Silicon Dioxide	SiO ₂	%	60.25
Titanium Dioxide	TiO ₂	%	1.07
Aluminium Oxide	Al ₂ O ₃	%	20.15
Iron (III) Oxide	Fe ₂ O ₃	%	7.12
Calcium Oxide	CaO	%	4.67
Magnesium Oxide	MgO	%	1.54
Potassium Oxide	K ₂ O	%	2.92
Sodium Oxide	Na ₂ O	%	0.33
Phosphorus Pentoxide	P ₂ O ₅	%	0.11
Chromium (III) Oxide	Cr_2O_3	%	0.02
Manganese (II,III) Oxide	Mn ₃ O ₄	%	0.11
Zirconium Oxide	ZrO ₂	%	0.03
Hafnium (IV) Oxide	HfO ₂	%	<0.01
Lead Oxide	PbO	%	<0.02
Zinc Oxide	ZnO	%	0.01
Barium Oxide	BaO	%	0.05
Strontium (II) Oxide	SrO	%	0.02
Tin (IV) Oxide	SnO ₂	%	<0.01
Copper Oxide	CuO	%	0.01
Loss on Ignition		%	0.92
Loss on Ignition Temperature		°C	1025
Total		%	99.33
Sulphur Trioxide	SO3	%	<0.05
UKAS Accredited			Yes

The sulphur trioxide may not be a total sulphur figure but is the sulphur remaining after LOI and fusion. Results are quoted to 2 decimal places but are accurate to 3 significant figures or the number of figures given, whichever is the lesser.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

End of Test Report

C.E. Aney

Miss Clare Askey Technician

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications. Lucideon Limited Queens Road, Penkhull Stoke-on-Trent Staffordshire ST4 7LQ Page 1 of 1

Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT

FAO: Mr. Chris Williamson

- Report of Tests on: Loxwood Clay Pit
- Your Reference: Borehole 1C & 1D Composite

20-Sep-2017

Lucideon Reference: (173136)-29482

Date Reported:

Date Logged: 13-Jul-2017

Order Number:

Date(s) of Test(s):

CW/Loxwood 19-Sep-2017 to 19-Sep-2017

XRF Analysis

Methods C201 based on BSEN ISO 12677:2011

Result(s)		Units	
Sample Basis			Dried 110 deg C
Silicon Dioxide	SiO ₂	%	55.73
Titanium Dioxide	TiO ₂	%	1.00
Aluminium Oxide	A I ₂ O ₃	%	17.38
Iron (III) Oxide	Fe ₂ O ₃	%	8.76
Calcium Oxide	CaO	%	2.75
Magnesium Oxide	MgO	%	1.22
Potassium Oxide	K ₂ O	%	2.39
Sodium Oxide	Na ₂ O	%	0.27
Phosphorus Pentoxide	P ₂ O ₅	%	0.14
Chromium (III) Oxide	Cr_2O_3	%	0.01
Manganese (II,III) Oxide	Mn ₃ O ₄	%	0.42
Zirconium Oxide	ZrO ₂	%	0.03
Hafnium (IV) Oxide	HfO ₂	%	<0.01
Lead Oxide	PbO	%	<0.02
Zinc Oxide	ZnO	%	0.01
Barium Oxide	BaO	%	0.04
Strontium (II) Oxide	SrO	%	0.02
Tin (IV) Oxide	SnO ₂	%	<0.01
Copper Oxide	CuO	%	<0.01
Loss on Ignition		%	9.09
Loss on Ignition Temperature		°C	1025
Total		%	99.26
Sulphur Trioxide	SO3	%	<0.05
UKAS Accredited			Yes

The sulphur trioxide may not be a total sulphur figure but is the sulphur remaining after LOI and fusion. Results are quoted to 2 decimal places but are accurate to 3 significant figures or the number of figures given, whichever is the lesser.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

End of Test Report

C.E. Aney

Miss Clare Askey Technician

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications. Lucideon Limited Queens Road, Penkhull Stoke-on-Trent Staffordshire ST4 7LQ Page 1 of 1

Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT

FAO: Mr. Chris Williamson

- Report of Tests on: Loxwood Clay Pit
- Your Reference: Borehole 5A & 5B Composite

20-Sep-2017

Lucideon Reference: (173136)-29483

Date Reported:

Date Logged: 13-Jul-2017

Order Number: Date(s) of Test(s):

CW/Loxwood 19-Sep-2017 to 19-Sep-2017

XRF Analysis

Methods C201 based on BSEN ISO 12677:2011

Result(s)		Units	
Sample Basis			Dried 110 deg C
Silicon Dioxide	SiO ₂	%	53.43
Titanium Dioxide	TiO ₂	%	1.07
Aluminium Oxide	A I ₂ O ₃	%	21.26
Iron (III) Oxide	Fe ₂ O ₃	%	9.05
Calcium Oxide	CaO	%	1.37
Magnesium Oxide	MgO	%	1.37
Potassium Oxide	K ₂ O	%	2.57
Sodium Oxide	Na ₂ O	%	0.19
Phosphorus Pentoxide	P ₂ O ₅	%	0.13
Chromium (III) Oxide	Cr ₂ O ₃	%	0.02
Manganese (II,III) Oxide	Mn ₃ O ₄	%	0.28
Zirconium Oxide	ZrO ₂	%	0.03
Hafnium (IV) Oxide	HfO ₂	%	<0.01
Lead Oxide	PbO	%	0.04
Zinc Oxide	ZnO	%	0.01
Barium Oxide	BaO	%	0.05
Strontium (II) Oxide	SrO	%	0.02
Tin (IV) Oxide	SnO ₂	%	<0.01
Copper Oxide	CuO	%	0.01
Loss on Ignition		%	9.09
Loss on Ignition Temperature		°C	1025
Total		%	99.99
Sulphur Trioxide	SO3	%	<0.05
UKAS Accredited			Yes

The sulphur trioxide may not be a total sulphur figure but is the sulphur remaining after LOI and fusion. Results are quoted to 2 decimal places but are accurate to 3 significant figures or the number of figures given, whichever is the lesser.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

End of Test Report

C.E. Aney

Miss Clare Askey Technician

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications. Lucideon Limited Queens Road, Penkhull Stoke-on-Trent Staffordshire ST4 7LQ Page 1 of 1

Lockwood Clay Pits Ltd c/o Protreat Ltd 33 High Street Newport Shropshire TF10 7AT

FAO: Mr. Chris Williamson

- Report of Tests on: Loxwood Clay Pit
- Your Reference: Borehole 5C & 5D Composite

20-Sep-2017

Lucideon Reference: (173136)-29484

Date Reported:

Date Logged: 13-Jul-2017

Order Number: Date(s) of Test(s):

CW/Loxwood 19-Sep-2017 to 19-Sep-2017

XRF Analysis

Methods C201 based on BSEN ISO 12677:2011

Result(s)		Units	
Sample Basis			Dried 110 deg C
Silicon Dioxide	SiO ₂	%	63.35
Titanium Dioxide	TiO ₂	%	1.22
Aluminium Oxide	Al ₂ O ₃	%	18.24
Iron (III) Oxide	Fe ₂ O ₃	%	6.30
Calcium Oxide	CaO	%	0.65
Magnesium Oxide	MgO	%	0.95
Potassium Oxide	K ₂ O	%	2.18
Sodium Oxide	Na ₂ O	%	0.16
Phosphorus Pentoxide	P ₂ O ₅	%	0.06
Chromium (III) Oxide	C r ₂ O ₃	%	0.02
Manganese (II,III) Oxide	Mn ₃ O ₄	%	0.09
Zirconium Oxide	ZrO ₂	%	0.04
Hafnium (IV) Oxide	HfO ₂	%	<0.01
Lead Oxide	PbO	%	<0.02
Zinc Oxide	ZnO	%	0.01
Barium Oxide	BaO	%	0.05
Strontium (II) Oxide	SrO	%	0.01
Tin (IV) Oxide	SnO ₂	%	<0.01
Copper Oxide	CuO	%	<0.01
Loss on Ignition		%	6.12
Loss on Ignition Temperature		°C	1025
Total		%	99.45
Sulphur Trioxide	SO3	%	0.05
UKAS Accredited			Yes

The sulphur trioxide may not be a total sulphur figure but is the sulphur remaining after LOI and fusion. Results are quoted to 2 decimal places but are accurate to 3 significant figures or the number of figures given, whichever is the lesser.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

End of Test Report

C.E. Aney

Miss Clare Askey Technician

This report is issued in accordance with the Conditions of Business of Lucideon Limited and relates only to the sample(s) tested. No responsibility is taken for the accuracy of the sampling unless this is done under our own supervision. This report shall not be reproduced in part without the written approval of Lucideon Limited, nor used in any way as to lead to misrepresentation of the results or their implications. Lucideon Limited Queens Road, Penkhull Stoke-on-Trent Staffordshire ST4 7LQ Page 1 of 1