

GROUND INVESTIGATION REPORT

for the site at

FORMER STANDEN LANDFILL,

EVERGREEN FARM, WEST HOATHLY ROAD,

EAST GRINSTEAD, WEST SUSSEX,

RH19 4NE

on behalf of

TJS SERVICES LIMITED

Report:	GROUND INVESTIGATION REPORT
Site:	FORMER STANDEN LANDFILL, EVERGREEN FARM, WEST HOATHLY ROAD, EAST GRINSTEAD, WEST SUSSEX, RH19 4NE
Client:	TJS SERVICES LIMITED
Date:	23 rd JANUARY 2019
Reference:	GE17326/GIRv1.2/JAN19
Version:	1.2
Prepared by:	JASON KANELLIS BSc (Hons), MSc, FGS
	SENIOR CONSULTING ENGINEER
Reviewed by:	Hegate
	LAURA LEGATE CGeol, CSci, BSc (Hons), MSc FGS REGIONAL MANAGER - WEST

Geo-Environmental Services Limited

Unit 7, Danworth Farm, Cuckfield Road, Hurstpierpoint, West Sussex, BN6 9GL +44(0)1273 832972 www.gesl.net

AMENDMENT RECORD

Revision ref.	Date	Reasons for amendment	Author's initials
1.0	19/08/18	Initial issue for client comment.	JK
1.1	17/09/18	Updated to reflect client comments and updated leachate, surface water analysis and ground gas monitoring results.	LL
1.2	23/01/19	Updated on completion of the gas monitoring.	LL

CONTENTS

EXECU ⁻	TIVE SUMMARY	vi
1.0	INTRODUCTION	9
1.1	General	9
1.2	Form of Development	9
1.3	Objectives	9
1.4	Standards and References	9
1.5	Conditions	10
2.0	DESK STUDY SUMMARY	11
2.1	Site Description	11
2.2	Geology, Hydrogeology and Hydrology	11
2.3	Preliminary Environmental Risk Assessment Summary	12
2.4	Preliminary Geotechnical Risk Assessment Summary	13
2.5	Scope of Works	13
2.6	Investigation Strategy	14
3.0	ENCOUNTERED CONDITIONS	16
3.1	Ground Conditions	16
3.2	Leachate	18
3.3	Ground Gases & Vapours	19
3.4	Obstructions	19
3.5	Geochemical Analysis	20
4.0	ENVIRONMENTAL CONSIDERATIONS	21
4.1	Outline Risk Assessment	21
4.2	Soil Contamination vs. End Users	21
4.2.1	Former Landfill	22
4.2.2	Ancient Woodland	25
4.2.3	South West	25
4.3	Soil Contamination vs. Adjacent Land Users	26
4.4	Soil Contamination vs. Soft Landscaping	26
4.4.1	Former Landfill	26
4.4.2	Ancient Woodland	27
4.4.3	South West	27
4.5	Soil Contamination vs. Building Materials	28
4.6	Soil Contamination vs. Surface Water	29
4.7	Soil Contamination vs. Groundwater	31
4.8	Ground Gases & Vapours vs. End Users	31
4.9	Ground Gases & Vapours vs. Adjacent Land Users	32
4.10	Ground Gases & Vapours vs. Soft Landscaping	32
4.11	Waste Disposal	33
4.11.1	Reuse of Material	33
4.11.2	Reuse of Waste	34
4.11.3	Disposal to Landfill	34
4.12	Discovery Strategy	34

FIGURES

FIGURE 1	Site Location Plan
FIGURE 2	Site Plan

FIGURE 3 Exploratory Hole Location Plan

FIGURE 4 Plan showing Location of Natural Soils

APPENDICES

APPENDIX A	Site Photographs
APPENDIX B	Exploratory Hole Logs

APPENDIX C Ground Gas and Groundwater Monitoring Data

APPENDIX D Geochemical Laboratory Results & Statistical Assessment

EXECUTIVE SUMMARY		
	Site Address	Former Standen Landfill, Evergreen Farm, West Hoathly Road, East Grinstead, West Sussex, RH19 4ND
Site Details	National Grid Reference	NGR 539018 136273
	Form of Development	The restoration of the former landfill on site, via an environmental permit application to improve the site condition to allow for future agricultural/pasture use. The construction of a residential dwelling on the south-west of the site and consideration of the potential conversion of former agricultural buildings for use as holiday let accommodation.
	Scope of works	The investigation included undertaking a review of a third party desk study previously undertaken for the site, followed by an intrusive investigation to confirm the ground and groundwater conditions on site and to determine the physical properties of the waste present within the former landfill identified on site. To support the development of geotechnical and geo-environmental assessments of the site in relation to the current land use, and proposed land use.
Encountered Conditions	Ground Conditions	Former Landfill: The investigations within the former landfill area, located outside of the ancient woodland (TP13 to TP15, TP18 to TP21, TP24 to TP32, TP35 to TP41, TP43, TP45 to TP50, WS02 to WS06, WS08 to WS12, HP01 to HP03, TP08/HP, TP16/HP, TP17/HP, TP33/HP, TP34/HP, TP42/HP and TP44/HP) encountered Made Ground up to 5.00m bgl (maximum depth of investigation). It should be noted that natural clays of the Wadhurst Clay Formation were encountered within WS02 at a depth of 3.00m bgl, WS08 at a depth of 4.20m bgl and within TP48 at a depth of 2.30m bgl, these positions were noted to be located along the anticipated edge of the landfill body. The depth of the waste mass was not proven during the investigations undertaken on the site. Ancient Woodland: Positions situated within the ancient woodland (HP04 to HP10) encountered natural clays of the Wadhurst Clay Formation beneath limited thicknesses of Topsoil, except for HP06 and HP10 in which Made Ground was encountered. South West: The majority of positions (TP01 to TP07, TP09 to TP12, WS01 and WS07) located on the south-west portion of the site (i.e. to the west and south of the existing buildings) encountered only natural soils of the Ardingly Sandstone Member beneath a thin mantle of Topsoil. The exception to this was TP05 in which a limited thickness of Made Ground was encountered to a depth of 0.80m bgl.
	Groundwater/Leachate	Perched water was only encountered during the intrusive investigation works within TP30, TP43, WS02, WS06 and WS12 at depths ranging from 2.80m to 4.88m bgl, this is considered to represent leachate, where water has infiltrated through the site and the underlying waste mass and is located over less permeable horizons. Leachate was also encountered within several the monitoring wells installed within WS01-WS12 across the site during the return monitoring undertaken to date. Twelve return visits have been undertaken on the site from the 30 th July 2018 to the 21 st December 2019 with leachate encountered at depths between 0.20m and 4.90m bgl. Groundwater is considered to be present at depth beneath the site but has not been encountered within the investigation works undertaken on site to date.

	Excavations	Excavations within the Made Ground may remain stable in the short term, but this would be subject to the proportions of waste encountered and depth of excavation. Excavations may require some form of temporary support or battering back to a safe angle. Both shallow and deeper excavations within the Natural Ground are unlikely to remain relatively stable in the short to medium term. All excavations taken below the groundwater table or where perched water or leachate ingress occurs will become highly unstable and some form of temporary support and dewatering will be necessary.
Buried Concrete (south west)		The results of the sulphate and pH analysis undertaken on samples of the Topsoil and natural soils on this portion of the site found the soil samples tested to have a water-soluble sulphate concentration within design sulphate (DS) class DS-1 of BRE special digest 1. An aggressive environment for concrete (ACEC) classification of AC-1 is deemed appropriate for foundations within this stratum. However, it should be noted that an anomalous pH result (pH3.9) was encountered within WS01 which would render the ACEC classification as AC-2z. This aside, the sample tested was recovered from a depth of 4.50m bgl, i.e. significantly below the likely traditional foundation depth of a proposed low-rise building.
		The results of the sulphate and pH analysis undertaken on a single sample of the Made Ground encountered within TP05 found the soil samples tested to have water soluble sulphate concentration within design sulphate (DS) class DS-2 of BRE special digest 1. An aggressive environment for concrete (ACEC) classification of AC-2 is deemed appropriate for foundations extending through this stratum.
	Human Health	Former Landfill: Due to the elevated concentrations of benzo(a)pyrene identified across the site, it is recommended that a cover system be utilised to protect end users of the site. However, it should be noted that a risk to groundwater/surface water has also been identified in relation to the waste mass on site. It is considered that measures proposed to be protective of controlled water would also be sufficient to be protective of human health.
Environmental Considerations		Where materials are proposed to be imported to site to provide a suitable capping to address the risk to human health and controlled waters, imported materials should be both physically and chemically suitable for the proposed end use. This would also serve to be protective of any livestock which may subsequently utilise these areas as pasture.
		South West: Remedial measures would be necessary in parts of the site where any development proposals include the placement of private or communal soft landscaping over the isolated areas (i.e. TP05) of encountered Made Ground to provide a suitable growing medium.
	Groundwater/Surface Water	Elevated PAH has been identified within analysis of the leachate within the landfill mass and within the stream on site during the monitoring and analysis undertaken on the 30 th July, 10 th and 24 th August. Deep groundwater was not encountered during the investigation works undertaken on site to date with the depth of intrusive investigation works currently undertaken on site limited to <5.00m bgl. The monitoring to date has indicated the presence of mobile contaminants within the waste mass on site such that remediation measures

No radon protection measures are required.
Former Landfill/Ancient Woodland: Methane was recorded in the range of 0.0% – 53.0% v/v, whilst carbon dioxide and oxygen were present in the range 0.0% – 62.0% v/v and 0% – 22.0% v/v respectively. Positive borehole flow up to 38.0l/hr were detected on the site with the highest positive flows recorded in WS02, WS09 and WS12 and low levels (up to 0.3l/hr) recorded within all location at some point over the monitoring period. Negligible VOCs were recorded as ranging between 0.0ppm and 1.2ppm. The atmospheric pressure was recorded as ranging between 984mb and 1016mb. The highest methane concentrations recorded were noted to be within WS02, WS09 and WS12. Due to the elevated levels of methane and carbon dioxide identified on the site any remediation measures will need to include consideration of ground gases and the potential for altering the ground gassing regime on the site as variation in the moisture content of the waste can alter the regime and capping may alter existing preferential pathways. Capping of the landfill is recommended to protect controlled water on site and any such capping layer should include a gas venting layer or similar, and measures to mitigate further migration/build-up of
the ground gases beneath the site. South-West: Methane was not recorded within the standpipe WS01 or WS07, whilst carbon dioxide were present in the range 0.0% – 3.5% v/v (WS01), 0.0% – 6.0% v/v (WS07) and Oxygen were present in the range 17.1% – 21.3% v/v (WS01) and 11.3% – 21.3% v/v (WS07) respectively. Borehole flows up to 0.1l/hr were recorded during the monitoring visits. Negligible VOCs were recorded as ranging between 0.0ppm and 0.6ppm. The atmospheric pressure was recorded as ranging between 984mb and 1013mb. Based on the findings of the desk study and the results of the monitoring visits
to date, it is considered that the risk to the south western portion of the site which is located up topographical gradient from the landfill mass on site is considered to be low.
Barrier pipe is likely to be required for any development works on the site where services pass through or in close proximity to Made Ground/Infilled Ground, subject to the confirmation from the local water utility supplier.
WAC testing has not currently been carried out on the site as current proposal do not include the excavation or disposal of materials from site. Should materials for disposal be identified WAC testing should be carried out in order to classify the materials for disposal.
_

Further Action:

- Installation of deep monitoring wells on site to allow for monitoring and analysis of underlying groundwater at depth beneath the site.
- Provision of a Remediation Method Statement, landfill capping design (to include a gas venting layer and drainage layer, the design of which should include a slope stability assessment;
- Provision of a Materials Management Plan should it be proposed to re-use materials on site or import materials for re-use on site; or appropriate application for an Environmental Permit.
- If abnormal conditions are encountered, Geotechnical/Geo-Environmental advice should be sought to determine a suitable source of action.

This Executive Summary is intended to provide a brief summary of the main findings and conclusions of the investigation. For further information, reference should be made to the main report ref. GE17326/GIRv1.2/JAN19.

1.0 INTRODUCTION

1.1 General

Geo-Environmental Services Limited was instructed by TJS Services Limited, to undertake an investigation to determine the physical and chemical quality of the waste mass on site and to assess the geo-environmental factors pertaining to the site at the Former Standen Landfill, Evergreen Farm, West Hoathly Road, East Grinstead, West Sussex, RH19 4ND (National Grid Coordinates at centre: 539018, 136273), herein referred to as the 'site'. The site's location is presented in Figure 1.

1.2 Form of Development

It is understood that that proposals comprised the restoration of the former landfill on site, anticipated to be via an environmental permit application to improve the site condition of the site to allow for future agricultural/pasture use and to be protective of human health and controlled waters.

In addition, it is understood that the construction of a residential dwelling is proposed on the south-west portion of the site with consideration of the potential for conversion of former agricultural buildings for use as holiday let accommodation in due course.

1.3 Objectives

The investigation was to comprise a review of the existing desk study of the site and an assessment on the potential environmental impacts of the site in relation to the sites current use and potential improvements to ensure the site remains protective of human health and controlled waters. Together with the consideration of the proposed development works (primarily south-west portion of the site), adjacent land uses, and the wider environment, in the context of the immediate liabilities under the Environment Act 1990, and risks posed to controlled waters under the Water Resources Act from the site and potential development options.

1.4 Standards and References

Where practicable, the ground investigation and subsequent environmental assessments were undertaken in accordance with the following documents and guidance:

- British Standards Institute Code of Practice for Site Investigations (BS5930:2015);
- British Standards Institute Code of Practice for the Characterisation and Remediation from Ground Gas in Affected Developments (BS8485:2015);
- British Standards Institute Eurocode 7 Geotechnical Design Parts 1 & 2 (BS EN1997-1:2004 & BS EN1997-2:2007);
- British Standards Institute Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs) (BS8576:2013);
- British Standards Institute Investigation of Potentially Contaminated Sites Code of Practice, BSI 2013 (BS10175:2011+A1:2013);
- British Standards Institute Soils for Civil Engineering Purposes (BS1377:1990);
- British Standards Institute Specification for Topsoil and Requirements for Use (BS3882:2015);
- Building Research Establishment The Performance of Building Materials in Contaminated Land (BRE255) (1994);
- Construction Industry Research and Information Association Assessing risks posed by hazardous ground gases to buildings (C665) (2007);

- Department for Communities and Local Government National Planning Policy Framework (2012);
- Department for Environment Food and Rural Affairs and CL:AIRE Development of Category 4
 Screening Levels for Assessment of Land Affected by Contamination (SP1010) (2014);
- Department for Environment Food and Rural Affairs and Environment Agency Model Procedures for the Management of Contaminated Land (CLR11) (2004);
- Department of Environment Industry Profiles (1995 1996);
- Environment Agency Guidance for waste destined for disposal in landfills (2006);
- Environment Agency Guidance on Requirements for Land Contamination Reports (2005);
- National House Building Council, Environment Agency & Chartered Institute of Environmental Health

 Guidance for the Safe Development of Housing on Land Affected by Contamination (R&D Publication 66) (2008);
- National House Building Council Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present (10627-R01[04]) (2007);
- National House Building Council Standards, Chapter 4.1 Land Quality Managing Ground Conditions (2018);
- National Planning Policy Framework March 2012;
- Planning Policy Statement 23 Planning and Pollution Control.

1.5 Conditions

The data collected from the investigations have been used to provide an interpretation of the environmental conditions pertaining to the site. The recommendations and opinions expressed in this report are based on the data obtained. Geo-Environmental takes no responsibility for conditions that either have not been revealed in the available records, or that occurs between or under points of physical investigation. Whilst every effort has been made to interpret the conditions, such information is only indicative and liability cannot be accepted for its accuracy.

It should be noted that in particular the concentrations and levels of mobile liquid and gaseous materials are likely to vary with time. The results obtained may therefore only be representative of the conditions at the time of sampling. This report should not be taken as any guarantee that a site is free of hazardous or potentially contaminative materials.

Information contained in this report is intended for the use of the Client, and Geo-Environmental can take no responsibility for the use of this information by any party for uses other than that described in this report. Geo-Environmental makes no warranty or representation whatsoever express or implied with respect to the use of this information by any third party. Geo-Environmental does not indemnify the Client or any third parties against any dispute or claim arising from any finding or other result of this investigation report or any consequential losses.

Assessment criteria or other parameters developed for the evaluation of contamination on this site are based on a number of assumptions regarding exposure and toxicology, and exposure to contaminants and levels of adverse effects may therefore vary. Whilst every care and expertise has been employed in the development of such criteria, no liability is accepted in this respect. Other criteria or guidance on the development of assessment criteria may be published in the future, and no liability is accepted in this respect.

2.0 DESK STUDY SUMMARY

A desk study report has previously been undertaken for the site by Ged Duckworth Limited, dated May 2018. A review of this report was undertaken, and a summary of the key findings are presented in the following section. The factual correctness of third party reports and information is presumed and no liability is accepted for any errors or inaccuracies in such information.

Comments made in the following sections regarding possible ground conditions on the site are based purely on the previous desk study assessment and subsequent site walkover survey undertaken by Geo-Environmental. For Full details reference should be made to the full Desk Study Report.

2.1 Site Description

At the time of the intrusive investigation, the site comprised an irregular shaped parcel of land and generally comprised undeveloped agricultural land with several equestrian buildings, barns, and a residential property with an associated garden situated on the central western part of the site. The north eastern portion of the site was occupied by a woodland (designated as 'ancient') which had several pathways and clearings which were in use as camping pitches. Access to the site was via a gateway to the west.

The south west of the site generally comprised two fields, with the western-most comprising undeveloped grassland and the eastern field occupied by several mature trees. A concrete vehicle track was observed to the south of these two fields, leading from the gate in the west to the collection of buildings on the central western part of the site.

On the central western portion of the site, a single storey timber built residential property with associated private garden, timber built stable block and workshop, a two storey brick and timber barn and an equestrian sand school were observed.

The central and northern portions of the site comprised undeveloped grassland which had previously been used for pasture. This area sloped downwards from the south west to the north east with a significant slope downwards to the north east on the central northern boundary of this parcel of land. Information from the desk study indicated the presence of a small stream running along the north eastern boundary at the foot of the steep slope, which was understood to flow in a north easterly direction. The majority of the flow entering the stream was anticipated to comprise run off from surrounding areas together with shallow groundwater/leachate flowing through the site. During the site walkover in May 2018 there was noted to be a slight flow within the stream, however during the site investigation works this stream was noted to be dry with the investigation works being undertaken during a period of prolonged dry and hot weather. Subsequent flow has since been encountered during the return monitoring visits undertaken on the site between August and September 2018.

A number of mature and semi mature trees were noted to be present across the site, along the site boundaries, stream bed and associated with the ancient woodland. However, several trees along the north and north eastern boundary along the site boundary with the steam and along the boundary between the field and the ancient woodland were noted to be dead and completely stripped of leaves.

Site photographs obtained as part of the site walkover are presented in Appendix A.

2.2 Geology, Hydrogeology and Hydrology

British Geological Survey geological mapping indicated the geology of the site to comprise sands of the Ardingly Sandstone Member (on the north eastern portion) and mudstone of the Wadhurst Clay Formation (on the south western portion).

A band of superficial Head deposits comprising clay, silt, sand and gravel was also recorded across the central portion of the site.

The site was recorded by the Environment Agency as comprising a former landfill site, which was evidenced across parts of the site during the site walkover survey and as such Made Ground/infilled ground is anticipated to be present on the site.

The desk study reported that the site was underlain by Unproductive Strata (Wadhurst Clay Formation) in the north eastern portion of the site and a Secondary 'A' Aquifer (Ardingly Sandstone Member) within the south western portion of the site. The head deposits identified within the centre of the site was also noted to comprise a Secondary Undifferentiated Aquifer, however it is likely that these materials may previously have been excavated prior to the backfilling of the site as a landfill.

The site has not been reported as falling within a groundwater Source Protection Zone, and no potable water abstraction licenses are reported within the site boundary. The closest abstraction point reported within the previous desk study was located approximately 2000m to the south of the site for Standen Farm.

A surface water stream was identified running along the valley on the northern boundary of the site with a north eastly flow, however this is likely to dry up during periods of warmer, drier weather. A number of other streams were reported to flow in a similar direction within the valley features within the area which flow into a tributary of the River Medway. The site was reported as being located outside of an area at risk from flooding.

An area of ancient woodland was reported on the south east and eastern portion and boundaries of the site, referred to within the desk study as Rockingswood.

A historical landfill was reported to be present on the subject site referred to as Standen Landfill comprising inert waste. Several other areas of landfill and potentially infilled ground were also reported within 500m of the site. Given the age of the landfill, it is considered unlikely that any formal engineering or construction works was undertaken in relation to the landfill.

2.3 Preliminary Environmental Risk Assessment Summary

The Preliminary Risk Assessment (PRA) and Conceptual Site Model (CSM) have been developed for the site based on the information gathered as part of the desk study (May 2018) and subsequent site walkover survey that has been carried out on the site. Through which several plausible pollutant linkages have been identified on site in relation to the existing land use and potential proposed development across part of the site.

The potential pollutant linkages established within the desk study are not considered to prevent the continued use of the site or development on the subject site, but could require investigation and assessment to support further characterisation, calibration of the CSM and where/if necessary determine a remedial strategy to reduce, remove or otherwise control any risk within the site to key receptors, to include controlled waters, human health and the wider environment.

The desk study highlighted that there was a potential for a high risk to human health arising from the previous and current uses of the site with respect to the potential for landfill gas and a high risk to controlled water with

respect to potential mobile contaminants leaching through the landfill mass.

It was reported that the existing on-site buildings and barn were built during the period in which the landfill was operational and that the larger barn present on the site was potentially constructed into the waste mass on site (as reportedly evidenced by exposed waste in the adjacent embankment). There was also reported to be a potential risk to the adjacent woodland from potential ground gases, noted from trees along areas of the site boundary demonstrating some distress and dying back.

The desk study reported that the landowner has reported outbreaks of brown water at lower elevations on the site (possible leachate), photos of which are present in Appendix A. A high risk was reported with respect to controlled water (surface and groundwater) as a result of infiltration and leaching through the waste mass.

The former landfill was reported to have resulted in differential settlement across the site, which has restricted the use of the site with respect to land utilised for grazing. In addition, the presence of waste material within the near surface soils was considered to present a risk to end users (farm animals) from possible ingestion and trip hazard.

In order to progress this assessment in line with the National Planning Policy Framework, to provide further characterisation of the site and refinement of the PRA and CSM, it was recommended that intrusive investigation and associated testing be undertaken to confirm the findings of the desk study and to provide a robust risk assessment for the site with respect to the physical determination of the waste mass on site and to allow for consideration of the ongoing/future use of the site and proposed redevelopment.

2.4 Preliminary Geotechnical Risk Assessment Summary

Former Landfill Area

Whilst a detailed geotechnical assessment was outside the scope of the investigation works undertaken, consideration was given to the plausible linkages associated with the physical determination of the waste and associated gas generation and possible engineering solutions that may be required to reduce the potential risk to controlled water and human health from the site in its current status.

South West Area

It is understood that the south western portion of the site is proposed to be developed for a residential land use. However, whilst some recommendations are presented herein, a full geotechnical assessment was outside the scope of the proposed works on the site.

Investigation works were required across the entire site to determine the extent and boundaries of Made Ground or infilled materials across the site, which may affect the short or long terms risk in relation to the site and to allow for consideration of the location of such materials in relation to a potential proposed development.

2.5 Scope of Works

In summary, the following scope of works for the intrusive investigation was agreed with the Client:

- Up to 50No. machine excavated trial pits to depths of between 1.00m bgl and 3.00m bgl.
- Construction of twelve window sample boreholes (referenced WS01 to WS12) to depths of up to 5.00m bgl together with in situ testing and sampling.
- Hand pits to a maximum depth of 1.00m bgl in restricted access areas due to ecology, woodland and

access.

- Installation of combined ground gas and groundwater monitoring wells within all twelve window sample boreholes to facilitate return monitoring.
- Ground gas (spot monitoring) and groundwater monitoring of the well installations on twelve occasions.
- Geochemical laboratory testing of soils and water (surface) and leachate for a suite of commonly
 occurring brownfield contaminants following a review of the third party desk study for the site.
- Additional laboratory testing of soils and water for cyanides, volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), ammoniacal nitrogen, pesticide screening, and asbestos quantification (where encountered).
- Provision of a Ground Investigation Report.

2.6 Investigation Strategy

All intrusive positions were located to provide broad coverage of the site and to delineate the existing landfill boundaries. Standpipes were installed within all window sample positions and will be utilised to measure concentrations of ground gases and to allow for groundwater/leachate sampling. The depth of the wells installed as part of this phase of works is noted to be limited to a maximum depth of 5.00m bgl (subject to drilling conditions and potential obstructions encountered), as such any water obtained is likely to represent rainfall infiltrating through the site and leachate as opposed to groundwater underlying the site.

41No. machine excavated trial pits (ref: TP01 to TP07, TP09 to TP15, TP18 to TP21, TP24 to TP32, TP35 to TP41, TP43, and TP45 to TP50) were undertaken to depths of between 0.50m below ground level (bgl) and 3.00m bgl. 12No. window sample boreholes (ref: WS01 to WS12) were undertaken to depths of between 0.80m bgl and 5.00m bgl, and 17No. hand pits (ref: HP01 to HP06, HP07A, HP07B, HP08 to HP10, TP08/HP, TP17/HP, TP33/HP, TP34/HP, TP42/HP and TP44/HP) were undertaken to depths of between 0.05m bgl and 1.00m bgl. The hand pits were located in areas where access with an excavator was not possible due to health and safety and/or ecological constraints.

The investigation across the site has been spilt into three key areas:

- Former Landfill TP13 to TP15, TP18 to TP21, TP24 to TP32, TP35 to TP41, TP43, TP45 to TP50, WS02 to WS06, WS08 to WS12, HP01 to HP03, TP08/HP, TP16/HP, TP17/HP, TP33/HP, TP34/HP, TP42/HP and TP44/HP.
- Ancient Woodland (to include areas utilised for camping) HP04 to HP10.
- South West (area of proposed residential development) TP01 to TP07, TP09 to TP12, WS01 and WS07.

It should be noted that all intrusive locations were subject to ecological constraints. An ecologist was present on site during the investigation work undertaken with designated routes for traversing the site agreed and investigation positions cleared for ecology prior to breaking ground. Some isolated areas of the site were noted to be completely off limits due to the presence of badger sets identified within an area of the woodland and the need to maintain a buffer zone from these areas. In addition to the above, all intrusive positions within the ancient woodland on the east and south east of the site were limited to hand excavation within areas devoid of vegetation at the request of the ecologist.

All positions were also scanned for services by the engineer on site prior to breaking ground.

Soil, leachate and surface water samples were collected and placed into appropriate containing (amber jars, plastic tubs, amber bottle and plastic bottles with preservatives) and cool boxes on site for transit to the office, where they were stored under chilled conditions (<4°C) prior to final transportation in cool boxes to the laboratory by their in-house courier. Both the geotechnical and contamination (soil, leachate and surface water) testing were undertaken by UKAS accredited laboratories. Contamination testing of soil samples was also undertaken in accordance with accredited MCERTs protocols. Samples were stored in temperature controlled conditions from sampling until receipt at the laboratory from which time sample preparation and storage was determined by testing requirements and in line with laboratory's protocols.

3.0 ENCOUNTERED CONDITIONS

A factual record of the conditions encountered during the physical investigation of the site is presented in the following sections.

For further details of the encountered ground conditions, reference should be made to the engineer's logs presented in Appendix B, the groundwater and gas monitoring assessment presented in Appendix C, and the chemical testing results (soil, leachate and surface water) presented in Appendix D.

The physical ground investigation works were undertaken between the 5th and 12th July 2018. Contamination testing was undertaken by a UKAS accredited laboratory. Return gas and leachate level monitoring was undertaken between the 30th July and 21st December 2018.

Unless stated otherwise, all depths are reported as metres below ground level (m bgl).

3.1 Ground Conditions

The geology underlying the site was anticipated to comprise the Ardingly Sandstone Member on the south west of the site, the Lower Tunbridge Wells Sand on the central portion with the remainder of the north and north east of the site occupied by the Wadhurst Clay Formation. Superficial Head Deposits were also anticipated on the central portion of the site. With reference to the Desk Study Report, the majority of the site was anticipated to be underlain by a potentially significant thickness of Made Ground/infill ground associated with the former Standen Landfill.

Investigation positions located in the vicinity of the former landfill but outside the ancient woodland (TP13 to TP15, TP18 to TP21, TP24 to TP32, TP35 to TP41, TP43, TP45 to TP50, WS02 to WS06, WS08 to WS12, HP01 to HP03, TP08/HP, TP16/HP, TP17/HP, TP33/HP, TP34/HP, TP42/HP and TP44/HP) encountered Made Ground up to 5.00m bgl (which comprised the maximum depth of investigation position). It should be noted that natural clays of the Wadhurst Clay Formation were only encountered at depth beneath the Made Ground within WS02 at a depth of 3.00m bgl, WS08 at a depth of 4.20m bgl and within TP48 at a depth of 2.30m bgl.

Trial pits excavated on site were limited to a depth of 3.00m bgl and window sampler boreholes to a depth of 5.00m bgl (subject to drilling conditions). With the exception of WS02, WS08 and TP48, investigations in all other locations was unable to prove the vertical extent of the waste body. A generalised summary of the encountered ground conditions is presented in Tables 3.1.

Top (m bgl)	Base (m bgl)	Geology	Position
0.00	2.30 - 5.00+	MADE GROUND: Light/dark/yellowish brown to blue, black and green silty, clayey gravelly sand, and sandy silt gravelly clay matrix with abundant concrete, brick, metal, tarmacadam, clinker, carbonaceous inclusions, timber, plastic, metal, fabric and glass.	All
2.30 - 4.20	5.00	WADHURST CLAY FORMATION: Firm to stiff orangish brown, yellowish brown and grey mottled silty CLAY, sandy CLAY and CLAY with occasional roots.	WS02, WS08 & TP48

Table 3.1 Summary of Ground Conditions (Former Landfill)

Positions situated within the ancient woodland (HP04 to HP10) encountered natural clays of the Wadhurst

Clay Formation beneath limited thicknesses of Topsoil, with the exception of HP06 and HP10 in which a thickness of Made Ground was encountered. A generalised summary of the encountered ground conditions is presented in Tables 3.2.

Top (m bgl)	Base (m bgl)	Geology	Position
0.00	0.05 - 0.10	TOPSOIL: Orangish brown, light brown, dark brown and grey sandy silt and organic sandy silt with frequent rootlets.	HP04, HP05, HA07A & HP07B, HP08 & HP09
0.00	0.40 - 0.90*	MADE GROUND: Light greyish brown and dark brown sandy silt and sandy organic silt with frequent rootlets and concrete, occasional carbonaceous inclusions and brick.	HP06 & HP10
0.10 - 0.40	0.75 - 1.00 LOWER TUNBRIDGE WELLS SAND: Light greyish brown, orange, orangish brown and grey mottled sandy clayey SILT and sandy SILT with occasional siltstone inclusions and lenses, and roots.		HP04, HP05, HP08, HP09 & HP10
0.75	1.00	WADHURST CLAY FORMATION: Firm to stiff orangish brown and greyish blue mottled silty CLAY with frequent ferruginous specks and occasional siltstone inclusions and roots.	НР08

^{*} Depth of Made Ground at HP06 potentially shallower than 0.90m bgl; concrete pushed down to base of intrusive position.

Table 3.2 Summary of Ground Conditions (Ancient Woodland)

The majority of positions (TP01 to TP07, TP09 to TP12, WS01 and WS07) located on the south west portion of the site (i.e. to the west and south of the existing buildings) encountered only natural soils of the Ardingly Sandstone Member beneath a thin mantle of Topsoil. The exception to this was TP05 in which Made Ground was encountered to a depth of 0.80m bgl. A generalised summary of the encountered ground conditions is presented in Tables 3.3.

Top (m bgl)	Base (m bgl)	Geology	Position
0.00	0.20 - 0.50	TOPSOIL: Light greyish brown and brown sandy silt and silty sand with frequent rootlets, occasional roots, and rare brick.	TP01 – TP04, TP06, TP07, TP09 - TP12, WS01 & WS07
0.00	0.80	MADE GROUND: Greyish brown sandy silt with abundant brick, concrete, plastic, slate, wire and metal.	TP05
0.20 - 0.80	4.70	ARDINGLY SANDSTONE MEMBER: Light orangish brown, light brown, light yellowish brown and grey mottled silty and clayey fine to medium SAND and sandy SILT with occasional sandstone inclusions and rare roots.	All

Table 3.3 Summary of Ground Conditions (South-West)

It was not possible to extend all the window sampler boreholes to the full proposed depth of 5.00m bgl on the site due to the nature of the waste mass encountered and refusals on concrete within the investigation locations across areas of the site.

In addition, during the site walkover a fragment of potential asbestos boarding was noted at ground level within the field area of the site where waste materials were evident at surface level. However, no further evidence of this material was identified within the investigation positions excavated across the site.

For further details of the ground conditions encountered, reference should be made to the trial pit, hand pit and borehole logs presented in Appendix B.

3.2 Leachate

Groundwater was not encountered within the intrusive positions undertaken due to the limited depth of investigation works on the site (maximum depth of 5.00mbgl) with groundwater expected to be present at depth beneath the site.

However, limited leachate was encountered within the Made Ground within several positions during the intrusive investigation works as summarised in Table 3.4. It is considered that this represents water that has infiltrated through the site and passed through the waste mass, potentially leaching contaminants and has then become contained on lower permeability bands within the waste mass.

Position	Depth of strike (m bgl)
TP30	2.00
TP43	1.80
WS02	2.90
WS06	4.88
WS12	3.20

Table 3.4 Summary of leachate depths encountered during intrusive investigation works (m bgl)

It should be noted that intrusive investigation works were undertaken following and during a period of warm, dry weather. In addition, no surface water was noted within the stream bed running along the northern boundary of the site or seepages on site at the time of the investigation.

Monitoring standpipes were installed within all twelve window sample positions (WS01 to WS12) to depths of between 0.80m bgl and 5.00m bgl. Twelve return monitoring visits have been undertaken on site between the 30th July and 21st December 2018, with the results of the monitoring presented in Table 3.5.

Davidia	Shandaina Bankh (na hall)	Depth of Leachate during return monitoring	
Position	Standpipe Depth (m bgl)	(m bgl)	
WS01	4.40	Dry	
WS02	4.40	0.70 – 2.70	
WS03	2.56	0.80 – 2.70	
WS04	4.70	Dry – 4.08	
WS05	4.87	0.60 – 4.90	
WS06	2.78	2.60 – 2.80	
WS07	1.95	1.90 – 2.00	
WS08	4.83	1.20 – 4.70	
WS09	3.55	Dry	
WS10	0.70	0.20 - 0.40	
WS11	4.86	2.00 – 2.90	
WS12	4.80	0.30 - 1.80	

Table 3.5 Summary of encountered leachate depths within standpipes (m bgl)

It should be noted that the water encountered within the standpipes are not considered to be the true groundwater underlying the site and is likely to represent perched accumulations of water (leachate) which have infiltrated through the waste mass. The installation of deeper monitoring wells to enable the collection of groundwater samples at depth beneath the site if required will form a separate phase of works on the site.

Although the stream was noted to have been dry during the intrusive works, flowing water was observed within parts of the stream running along the site's north western boundary during the return monitoring visits between the 30th July, 7th September and in November and December 2018.

During the return monitoring leachate and surface water samples were collected for analysis on the 30th July, 10th August and 24th August 2018 where sufficient volume of water/leachate was available. The results of this analysis are discussed in Section 4.0.

3.3 Ground Gases & Vapours

Ground gas monitoring standpipes were installed within Boreholes WS01 to WS12. These positions were monitored for methane, carbon dioxide, oxygen and borehole gas flow on twelve occasions between July and December 2018.

During the monitoring visits, methane was recorded at concentrations ranging between 0.0% v/v and 53.0% v/v, whilst carbon dioxide and oxygen were present in the range 0.0% - 62.0% v/v and 0.0% - 22.0% v/v respectively. A maximum borehole flow of 38.0l/hr was recorded. Negligible VOCs were recorded as ranging between 0.0ppm and 1.2ppm. The atmospheric pressure was recorded as ranging between 984mb and 1016mb.

The findings of the ground gas monitoring undertaken have been discussed in Section 4.0.

3.4 Obstructions

Artificial impenetrable obstructions were only encountered within areas occupied by the former landfill/waste body on site, with several of the window sample positions refusing on concrete at depths of between 0.80m bgl and 3.60m bgl.

As such, the presence of obstructions elsewhere on site (within the boundary of the encountered landfill) should not be discounted.

3.5 Geochemical Analysis

In order to assess the general chemical quality of the strata encountered, samples of soils recovered from the exploratory holes were submitted for analysis for a range of potential contaminants selected on the basis of the findings of the desk study and supported by the joint National House Building Council (NHBC), Environment Agency (EA) and Chartered Institute of Environmental Health (CIEH) publication, 'Guidance for the Safe Development of Housing on Land Affected by Contamination' (2008).

45No. soil samples were placed into plastic containers for general inorganic analysis and into amber jars for organic analysis. Samples were stored in temperature controlled conditions from sampling until receipt at the laboratory from which time sample preparation and storage was determined by testing requirements and in line with the laboratory's protocols.

Soil samples were submitted for analysis for a comprehensive suite of common zootoxic and phytotoxic elements based upon determinands listed within the above guidance including speciated petroleum hydrocarbon analysis and asbestos screens.

In addition, 14No. samples of soil were submitted for a suite of volatile organic compounds (VOC) and semi-volatile organic compounds (SVOC).

Furthermore, 12No. samples of soil were submitted for analysis for ammoniacal nitrogen, seven samples for a suite of cyanides, and five samples for a suite of organochlorine pesticides.

Leachate analysis was undertaken on 16No. samples of the soils encountered on site to determine the potential for leachable contaminants.

The soil analysis undertaken was scheduled to provide a spread of coverage across the site and across the depth profile of the waste mass encountered on the site.

Four samples of leachate and one sample of the stream water were also collected and submitted for analysis of a similar suite to the soils on the 30th July, 10th August and 24th August 2018, albeit augmented with dissolved oxygen (DO), electrical conductivity (EC), biological oxygen demand (BOD) and biochemical oxygen demand (BOD). Analyses for cyanides, VOC, SVOC, ammoniacal nitrogen, ammonium, nitrate and nitrite were also scheduled. The results of which are discussed in Section 4.0.

4.0 ENVIRONMENTAL CONSIDERATIONS

A Generic Quantitative Risk Assessment (GQRA) incorporating the results of the previous third party desk study and subsequent ground investigation was undertaken in accordance with CLR11, the findings of which are presented in the following sections.

Site workers involved in the preparation and construction of any works or development on site have not been considered further in this assessment as the Principal Contractor is duty bound under the current CDM Regulations to undertake their own risk assessments with respect to their employees.

4.1 Outline Risk Assessment

A number of plausible pollutant linkages were identified as part of the previous third party desk study undertaken for the site, as summarised in Section 2.3. The intrusive investigation works did not encounter conditions that warranted a revision of the preliminary Conceptual Site Model.

4.2 Soil Contamination vs. End Users

The presence of a possible contaminant does not necessarily imply that a site or area is contaminated or that there is any unacceptable risk to human health. A Preliminary Quantitative Risk Assessment has been undertaken in accordance with CLR11, in order to evaluate any unacceptable risks posed to human health with respect to the proposed redevelopment. It should be noted that this assessment is protective of the chronic long-term effects of contaminants, which is also likely to be protective of any possible immediate acute effects.

A quantitative risk assessment has been undertaken by comparing the results of the laboratory chemical testing of shallow soils against Atkins' ATRISK Soil Screening Values (SSV) generated using the Contaminated Land Exposure Assessment (CLEA) model v1.06 published by the Environment Agency, or against the Category 4 Screening Levels (C4SLs) published by DEFRA or the Land Quality Management (LQM) Chartered Institute of Environmental Health (CIEH) S4ULs. Although the C4SLs were released for Part 2A use, the associated policy companion document for the C4SLs indicated that they may also be used for planning. Although the C4SLs represent a marginally higher risk level than the SSACs (low risk rather than minimal risk) it is considered that the risk levels remain very low. Therefore, the final C4SLs are considered to be suitable to assess soils under the planning regime.

Where appropriate, statistical analysis of the samples within the datasets was undertaken in accordance with guidance contained in the CIEH/CL:AIRE report 'Comparing Soil Contamination Data with a Critical Concentration' (May 2008). If the contamination status of the soils is considered in a planning context, the null hypothesis tested by the analysis is whether the true mean concentration is equal to or greater than the critical concentration for a given determinant, with the critical concentration being the relevant SSAC or GAC (the soil screening value) for that determinant in the context of the intended end use of the site. If the analysis shows that the true mean concentration is less than the critical concentration the null hypothesis can be rejected. The guidance recommends that for the null hypothesis to be rejected the analysis should show that there is a 95% (or higher) likelihood that the true mean concentration is below the critical concentration. Where this is the case the site is considered to be acceptable for the planned end use without any necessary remedial measures. However, a statistical assessment is not considered representative where targeted sampling and analysis has been undertaken.

The results of the analysis undertake have been separated into the three key areas for assessment:

- 1) Former Landfill
- 2) Ancient Woodland
- 3) South West Area

4.2.1 Former Landfill

This portion of the site currently comprises open space and going forward is proposed to be used for pasture and amenity space for the existing residential property and for campers using the adjacent ancient woodland camp site.

The dataset has been broken down into each type of material encountered to include existing landfill cover material, deeper landfill material, and natural soils beneath the landfill materials (where encountered at the edges of the waste mass), in order to allow for appropriate analysis.

Existing Landfill Cover Material

The statistical analysis undertaken on samples of the existing landfill cover material encountered within the intrusive positions on this portion of the site utilised either C4SL (soil organic matter [SOM] of 6%) for Public Open Space 1, S4UL (SOM of 1% where appropriate) for residential public open space or Atkins' ATRISK SSVs for a 'Public Open Space (residential)' (SOM of 1%). Atkins ATRSK SSVs have been utilised on the site as they allow the assessment against a SOM of 1% which is considered to be more representative of the site as opposed to a SOM of 6%.

The results of the statistical analysis undertaken on samples of the existing landfill cover material indicated that the null hypothesis could be rejected for all the determinands examined with the exception of benzo(a)pyrene which indicated an evidence level of 69%. It should be noted that a single outlier for benzo(a)pyrene was encountered within WS03 at a depth of 0.20m bgl (26.8mg/kg). When removed from the dataset the null hypothesis for benzo(a)pyrene can be rejected. However, there were no visual differences between the materials encountered within WS03 and those encountered elsewhere on this portion of the site, as such the outlier could not be treated as a hot spot and removed from the dataset.

All samples submitted for asbestos screens were returned with no asbestos fibres identified.

Furthermore, samples submitted for organochlorine pesticide suites, all indicated results below the laboratory detection limits.

Deeper Landfill Material

Table 4.1 summarises the laboratory results for samples of the deeper landfill materials (>1.0m bgl) encountered on this portion of the site.

Determinand	Unit	Minimum concentration	Maximum Concentration
Arsenic	mg/kg	4.5	30.4
Barium	mg/kg	23	473
Beryllium	mg/kg	<1.0	2.8
Cadmium	mg/kg	<0.5	5.5
Chromium	mg/kg	8.9	42.2
Copper	mg/kg	8.2	341
Lead	mg/kg	13.9	788

Mercury	mg/kg	<0.5	0.9
Nickel	mg/kg	6.4	54
Selenium	mg/kg	<1.0	1.3
Vanadium	mg/kg	11.8	57.7
Zinc	mg/kg	18.3	546
Elemental Sulphur	mg/kg	<20	1810
Total Sulphide	mg/kg	<2.0	130
Total Cyanide	mg/kg	<1.0	8.1
Water Soluble Boron	mg/kg	<0.5	2.9
рН	рН	5.2	11.1
Total Organic Carbon	%	0.26	6
Total Phenols	mg/kg	<6	13
Naphthalene	mg/kg	<0.1	10.9
Acenaphthylene	mg/kg	<0.1	3.9
Acenaphthene	mg/kg	<0.1	30.8
Fluorene	mg/kg	<0.1	33.8
Phenanthrene	mg/kg	<0.1	350
Anthracene	mg/kg	<0.1	116
Fluoranthene	mg/kg	<0.1	403
Pyrene	mg/kg	<0.1	324
Benzo(a)anthracene	mg/kg	<0.1	151
Chrysene	mg/kg	<0.1	153
Benzo (b) fluoranthene	mg/kg	<0.1	124
Benzo(k)fluoranthene	mg/kg	<0.1	113
Benzo (a) pyrene	mg/kg	<0.1	123
Indeno (1,2,3-cd) pyrene	mg/kg	<0.1	79.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	18.8
Benzo[g,h,i]perylene	mg/kg	<0.1	79.1
Total PAH(16)	mg/kg	<0.1	2100
Talman	/1	.10	205
Toluene	μg/kg	<10	305
>C8-C10 Aliphatic	mg/kg	<1.0	101
>C10-C12 Aliphatic	mg/kg	<1.0	136
>C12-C16 Aliphatic	mg/kg	<1.0	1080
>C16-C21 Aliphatic	mg/kg	<1.0	1400
>C21-C35 Aliphatic	mg/kg	<1.0	1350
>C35-C40 Aliphatic	mg/kg	<1.0	309
>C7-C8 Aromatic	mg/kg	<0.01	0.31
>C8-C10 Aromatic	mg/kg	<1.0	83.3
>C10-C12 Aromatic	mg/kg	<1.0	144
>C12-C16 Aromatic	mg/kg	<1.0	1050
>C16-C21 Aromatic	mg/kg	<1.0	1510
>C21-C35 Aromatic	mg/kg	<1.0	1880
>C35-C40 Aromatic	mg/kg	<1.0	499
Total (>C5-C40) Ali/Aro	mg/kg	<0.01	9240

Table 4.1 Summary of Laboratory Results (deeper landfill materials)

The VOC and SVOC analysis undertaken from the soils at depth within the waste mass have also identified the presence of volatile contaminants comprising primarily PAH and Phenols. In additional ammoniacal nitrogen concentrations identified within the soils are noted to have the potential to become leached, mobilised to groundwater (at depth) or surface water receptors with concentrations reported between 1.2mg/kg to 137mg/kg, with the high concentrations generally present at depth within the waste mass.

In addition, all samples submitted for asbestos screens were returned with no asbestos fibres identified.

Furthermore, samples submitted for organochlorine pesticide suites, all indicated results below the laboratory detection limits.

Given the maximum concentrations of contaminants of concern identified at depth within the waste mass it is considered that there is the potential that these contaminants may be mobilised and as such pose a risk of leaching and a risk to surface water and underlying groundwater on the site through surface water infiltration and the creation of leachate throughout the waste body on the site.

It is considered that remediation measures would be required with respect to controlled waters which in turn would serve to be protective of human health.

Former Landfill - Remedial Measures

Due to the elevated concentrations of benzo(a)pyrene identified across the site, it is recommended that a cover system be utilised to protect end users of the site and to prevent leaching of the contaminants contained within the waste body. In addition, this would further mitigate the risk associated with the physical quality of the encountered near surface soils (brick, tarmacadam, metal, glass, etc.). Imported materials should be both physically and chemically suitable for the proposed end use. This would also serve to be protective of any livestock which may subsequently utilise these areas as pasture.

Whilst the risk to controlled water is discussed further in Section 4.6, it is considered that remediation measures will be required on the site. At this time it is proposed that this comprises a minimum thickness of 1.10m to comprise an impermeable clay cap in order to reduce infiltration through the site together with the construction of a gas venting layer and drainage layer, to channel surface water runoff over land to the stream located in the valley at the north of the site and to reduce infiltration through the waste body. In addition to an impermeable layer the cap should be overlain by suitable subsoil and topsoil to provide a suitable growing medium on the site. Imported materials should be both physically and chemically suitable for the proposed end use. This would also serve to be protective of any livestock which may subsequently utilise these areas as pasture.

It is considered that the installation of a capping system on site and review of site drainage to increase overland flow rather than direct infiltration and flow through the waste mass may help be protective of controlled waters by limiting the potential leaching of the elevated contaminants of concern identified at depth beneath the site.

It should be noted that the installation of a capping system and associated drainage design to reduce infiltration may also result in a change to the gassing regime beneath the site and further monitoring should be undertaken following any remediation works to reassess the risk with respect to ground gases. Any capping design for the site will need to carefully consider ground gases and the potential changes that may occur in the

gassing regime due to changes in moisture content of the waste and the changes in existing flow paths.

Certification for all imported materials used to create the cover system should include laboratory analysis for determinands known to pose a risk to human health (i.e. heavy metals, poly-aromatic hydrocarbons [PAHs], total petroleum hydrocarbons [TPH] and asbestos).

Design of an appropriate capping for the site will also need to take into consideration the stability of the material placed and the underlying waste mass. Consideration will need to be given to the potential long term movement and settlement of the waste mass and the impact this may have on any capping system installed. An element of flexibility will need to be designed into the cap to ensure that movement does not result in fissuring or cracking of the impermeable capping materials. Consideration will also need to be given to the impact of weathering on any cap in terms of the potential for shrinking and swelling where a clay material is utilised.

4.2.2 Ancient Woodland

The analysis undertaken within the ancient woodland on the site has not identified any contaminant concentrations of concern above the respective screening criteria for open space. It is noted that slightly higher ammoniacal nitrogen was noted in the samples collected from HP07A at 0.05m bgl compared to HP7B at 0.10m bgl. Analysis was targeted within this area to locations where iron oxide staining had been noted. The results support the possibility that leachate may be migrating out of bands within the shallow soils located within the ancient woodlands. Based on these results this is likely to present a higher risk of leachate as overland flow to the surface water body located down topographical gradient.

As such, whilst it is considered that no specific remediation measures are required with respect to the soil quality within the ancient woodland, remediation measures to address the landfill on the wider site would also serve to be protective of this area and likely reduce the leachate migrating.

4.2.3 South West

The proposals for this portion of the site include the construction of a residential property within the south western-most field with associated private gardens and areas of soft landscaping.

The results of the analysis undertaken on samples of the Topsoil encountered within the intrusive positions on this portion of the site were compared individually against either C4SL (soil organic matter [SOM] of 6%) or Atkins' ATRISK SSVs for a 'residential with consumption of home-grown vegetables' land use (SOM of 1%). The average SOM content for the encountered Topsoil was 1.8%, as such the use of the ATRISK SSVs was considered to be appropriate and to present a conservative assessment.

The results indicated that all determinands were either below the laboratory detection limits of the relevant thresholds with the exception of barium in both samples of Topsoil. Concentrations of barium within WS03 and TP03 were 57.9mg/kg and 67.9mg/kg respectively. The ATRISK SSV for barium ranged between 56.8mg/kg (1% SOM) and 110mg/kg (6% SOM). Given the average SOM for the Topsoil on this parcel of land was 1.8%, it is considered likely that a site-specific threshold would be higher than the maximum recorded concentration of barium.

The results of the analysis undertaken on the sample of Made Ground encountered within TP05 were compared individually against either C4SL (soil organic matter [SOM] of 6%) or Atkins' ATRISK SSVs for a 'public open space 1' land use (SOM of 1%). The SOM content for the encountered Made Ground was 1.5%, as such

these thresholds were considered to be conservative.

The results indicated that all determinands were either below the laboratory detection limits of the relevant thresholds.

The results of the statistical analysis undertaken on samples of natural soils encountered on this portion of the site indicated that the null hypothesis could be rejected for all the determinands examined.

A single outlier for cyanide was identified within the dataset, however the concentration was well below the relevant threshold.

In addition, all samples submitted for asbestos screens were returned with no asbestos fibres identified.

As such, remedial measures are not considered necessary within the south western portion of the site to protect future end users of any proposed residential development from soils in this area. However, remedial measures would be necessary in parts of the site where any development proposals include the placement of private or communal soft landscaping over the isolated areas (i.e. TP05) of encountered Made Ground in order to provide a suitable growing medium.

4.3 Soil Contamination vs. Adjacent Land Users

Surrounding land uses were identified as mostly residential, agricultural and open space. Elevated contaminant concentrations were identified on the site, primarily at depth associated with the landfill materials, with concentrations of potentially harmful mobile contaminants identified which are considered to represent a risk to controlled waters and to a lesser degree (due to depth) to human health.

However given the topography of the site and the presence of a stream flowing within the valley along the northern boundary of the site it is considered that adjacent land users are unlikely to come into contact with the soil/waste identified on site and that the primary receptor in this respect would be the stream which would be expected to intercept any potential flow and leachate migration on the site. Therefore, no remedial action is considered necessary to protect adjacent land users from soils on site over and above the measures already proposed for the end users and controlled waters on the subject site itself.

It is recommended that dust suppression techniques, e.g. damping down exposed soils, are employed during the construction phases on site in order to minimise the potential for airborne migration of specific hazards and to manage potential nuisance issues for adjacent land users.

4.4 Soil Contamination vs. Soft Landscaping

4.4.1 Former Landfill

The results of the chemical analysis for determinants known to pose a potential phytotoxic risk to plant growth are summarised in Table 4.2, together with the respective adopted Generic Assessment Criteria (GAC) for plant growth. The compliance criteria set out in BS3882:2015 are pH dependent and thus the GAC used relate to the pH range measured on samples recovered from the site.

Determinand	Phytotoxicity GAC (mg/kg)			GAC Exceedances
Determinand	pH <6.0	pH 6.0-7.0	pH >7.0	GAC Exceedances
Zinc	200	200	300	Yes
Copper	100	135	200	No
Nickel	60	75	110	No

Table 4.2 Summary of Plant Phytotoxicity Assessment (Former Landfill)

Although the phytotoxicity assessment did identify exceedances of the relevant threshold for zinc, the recommended remedial measures to protect end users (to comprise a capping system on the site) would effectively negate the need for any specific remedial measures with regards to new planting on this portion of the site.

4.4.2 Ancient Woodland

The results of the chemical analysis for determinants known to pose a potential phytotoxic risk to plant growth are summarised in Table 4.3, together with the respective adopted Generic Assessment Criteria (GAC) for plant growth. The compliance criteria set out in BS3882:2015 are pH dependent and thus the GAC used relate to the pH range measured on samples recovered from the site.

Determinand	Phytotoxicity GAC (mg/kg)			GAC Exceedances
Determinand	pH <6.0	pH 6.0-7.0	pH >7.0	GAC Exceedances
Zinc	200	200	300	No
Copper	100	135	200	No
Nickel	60	75	110	No

Table 4.3 Summary of Plant Phytotoxicity Assessment (Ancient Woodland)

The phytotoxicity assessment did identify any exceedances of the relevant thresholds as such no specific measures are considered to be required in this respect.

4.4.3 South West

British Standard BS3882:2015 *Specification for topsoil and requirements for use* provides assessment criteria for a number of potentially phytotoxic contaminants in terms of new planting.

The results of the chemical analysis for determinants known to pose a potential phytotoxic risk to plant growth are summarised in Table 4.4, together with the respective adopted Generic Assessment Criteria (GAC) for plant growth. The compliance criteria set out in BS3882:2015 are pH dependent and thus the GAC used relate to the pH range measured on samples recovered from the site.

Determinand	Phytotoxicity GAC (mg/kg)			GAC Exceedances
Determinand	pH <6.0	pH 6.0-7.0	pH >7.0	GAC Exceedances
Zinc	200	200	300	Yes
Copper	100	135	200	Yes
Nickel	60	75	110	No

Table 4.4 Summary of Plant Phytotoxicity Assessment (South-West)

Although the phytotoxicity assessment did identify exceedances of the relevant thresholds for zinc and copper, the exceedances were limited to the Made Ground encountered within TP05. As such, remedial measures to

protect proposed soft landscaping would only be required when situated over the localised areas of Made Ground encountered on the portion of the site. These remedial measures would be limited to an appropriate thickness of 'clean' cover to sustain plant growth.

4.5 Soil Contamination vs. Building Materials

South West – Potable Water Supply Pipes

The current guidance on selection of materials for water supply pipes to be laid in contaminated land is contained in UK Water Industry Research's (UKWIR) report reference 10/WM/03/21 (re-issued 2010). However, the guidance is not mandatory and there have been concerns raised by various industry technical associations regarding the document and the methodologies proposed.

Although there are concerns regarding the document, in lieu of any further guidance in the first instance the results of this investigation have been compared with the proposed thresholds published in UKWIR Table 3.1. The results of the relevant chemical analyses did not indicate exceedances of the thresholds within the encountered Topsoil or natural soils. Based on the chemical testing results, barrier pipe will not be required for potable water supply pipes on site. However, should potable water supplies pass through any encountered Made Ground (i.e. TP05) then these will require protection (barrier pipe). However, it is recommended that the water supply company be contact to confirm their specific requirements in this respect.

As a matter of good practice, it is recommended that clean, granular backfill is used in service runs and that marker tapes are used for all buried services.

South West – Sulphates (Buried Concrete)

The results of the sulphate and pH analysis undertaken on samples of the Topsoil and natural soils on this portion of the site found the soil samples tested to have a water soluble sulphate concentration within design sulphate (DS) class DS-1 of BRE special digest 1. An aggressive environment for concrete (ACEC) classification of AC-1 is deemed appropriate for foundations within this stratum. However, it should be noted that an anomalous pH result (pH3.9) was encountered within WS01 which would render the ACEC classification as AC-2z. This aside, the sample tested was recovered from a depth of 4.50m bgl, i.e. significantly below the likely traditional foundation depth of a proposed low-rise building.

It should also be noted that the results of the sulphate and pH analysis undertaken on a single sample of the Made Ground encountered within TP05 found the soil samples tested to have water soluble sulphate concentration within design sulphate (DS) class DS-2 of BRE special digest 1. An aggressive environment for concrete (ACEC) classification of AC-2 is deemed appropriate for foundations extending through this stratum.

The advice of the above publication should be taken for the design and specification of all sub-surface concrete.

<u>Landfill – Potable Water Supply Pipes</u>

Although no proposed construction works are due to take place on the landfill portion of the site, it should be noted that any potable water supply pipes passing through the Made Ground on this portion of the site should be protected (barrier pipe). Should it be required to install pipework through this area of the site it is recommended that the local water company supplier be contacted to confirm their specific requirements in this respect.

4.6 Soil Contamination vs. Surface Water

A small, north easterly flowing stream was observed running along the north eastern boundary at the foot of the steep slope on site, within the valley. Although the stream was noted to be dry during the intrusive works undertaken these were noted to correspond with a period of warm and dry weather. However, flowing water was observed across part of the stream bed during the return monitoring visits undertaken between the 30th July and 7th September 2018 and samples were taken for laboratory analysis on three occasions during this period.

The results of the laboratory analysis undertaken on the sample of surface water encountered in the stream from the 30th July, 10th August and 24th August were compared against the Environmental Quality Standards (EQS) for a freshwater stream. The results of the poly-cyclic aromatic hydrocarbon (PAH) analysis indicated several exceedances of the thresholds, as summarised in Table 4.4.

Determinand	Threshold (µg/l)	Result (μg/l)
Fluoranthene	0.02	0.10-0.98
Benzo (b) fluoranthene	0.03	0.07-0.48
Benzo (k) fluoranthene	0.03	0.07-1.82
Benzo (a) pyrene	0.05	0.09-0.50
Indeno (1,2,3-cd) pyrene	0.02	0.05-0.28
Benzo(ghi)perylene	0.002	0.05-0.34

Table 4.4 Summary of Stream Water Analysis (30th July to 24th August 2018)

The results of the phenol, TPH and VOC analysis undertaken on the sample of stream water taken on the 30th July and 10th August 2018 were all noted to be below the laboratory detection limits. With TPH on the 24th August 2018 recorded at 14.7ug/l, Toluene at 12ug/l and Chlorobenzene at 2ug/l.

With respect to the PAH concentrations identified within the stream over the monitoring period, the analysis has shown a general increase over each of the three visits where sampling and analysis was undertaken. It is considered that this relates to the change in weather, with further rainfall and infiltration occurring, passing through the landfill body and leaching contaminants out to the adjacent surface water as we move away from the hot, dry summer months.

The analysis supports the assessment that the contaminants within the waste mass on the site are mobile, leaching and impacting controlled waters, as such it is considered that remediation measures are required with respect to the former landfill area to reduce the ongoing risk to controlled waters.

Leachate within Monitoring Wells

The results of the analysis undertaken on samples of leachate taken from standpipes installed within WS02, WS08, WS11 and WS12 from the 30th July, 10th August and 24th August 2018 were compared individually with the Environmental Quality Standards (EQS) for a freshwater stream (perceived as the most sensitive receptor). The results of the analysis indicated several exceedances of the relevant thresholds, as summarised in Table 4.5.

Determinand	Threshold (µg/l)	Result Range (μg/l)
Barium	100	121 - 273
Naphthalene	10	15.9 - 4.45
Fluoranthene	0.02	0.28 - 1200
Anthracene	0.1	0.12 - 171
Benzo (b) fluoranthene	0.03	0.22 - 547
Benzo (k) fluoranthene	0.03	0.18 - 431
Benzo (a) pyrene	0.05	0.24 - 779
Indeno (1,2,3-cd) pyrene	0.02	0.15 - 316
Benzo(ghi)perylene	0.002	0.16 - 369

Table 4.5 Summary of Leachate Analysis (from installed monitoring wells) - July to August 2018

In addition to the above, total petroleum hydrocarbon (TPH) concentrations within the four samples analysed ranged between $<5\mu g/l$ and $501 \mu g/l$.

Laboratory Leachate from Soils

The results of the leachate analysis undertaken on samples of deeper Made Ground encountered within the former landfill were also compared individually with the Environmental Quality Standards (EQS) for a freshwater stream (perceived as the most sensitive on site receptor). The results of the analysis indicated several exceedances of the relevant thresholds, as summarised in Table 4.6.

Determinand	Threshold (μg/l)	Result Range (μg/l)
Vanadium	20	<5 - 87
Anthracene	0.1	0.01 - 0.61
Fluoranthene	0.02	0.02 - 0.37
Benzo (b) fluoranthene	0.03	<0.01 - 0.21
Benzo (k) fluoranthene	0.03	<0.01 - 0.24
Benzo (a) pyrene	0.05	<0.01 - 0.26
Indeno (1,2,3-cd) pyrene	0.02	<0.01 - 0.15
Benzo(ghi)perylene	0.002	0.01 - 0.23

Table 4.6 Summary of Laboratory Leachate Analysis (from soils)

In addition to the above, a single sample (TP37 at 3.00m bgl) indicated a leachate total petroleum hydrocarbon (TPH) concentration of $18.7 \mu g/l$.

Based on the results of the surface water monitoring, leachate analysis from monitoring installations and laboratory leachate analysis to date, it was considered that contaminants of concern from within the soil and waste mass within the former landfill area on the site are likely to be impacting on controlled waters (surface water stream) and the remedial measures are recommended to protect the surface water feature on site.

However, the implementation of the recommended cover system (Section 4.2.2) would aid in the reduction of contaminated run-off and infiltration of rainwater passing through the waste mass, is considered to serve a reduction on the existing infiltration and mobilisation of contaminants beneath the site to the adjacent surface water. As such, the requirement for any other specific remedial measures to protect the surface water feature is not considered necessary.

4.7 Soil Contamination vs. Groundwater

It should be noted that the water encountered within the standpipes on site is not considered to be deep groundwater within the underlying nature soils on site and is likely to represent perched accumulations of water (leachate) which has infiltrated through the waste mass.

Given the concentrations of contaminants within the leachate encountered and the leachate analysis undertaken on samples from within the former landfill there is the potential for downward leaching of contaminants into the underlying aquifer. Given the relatively shallow extent of the investigation to date, the impact upon groundwater has not been possible to verify. Additional intrusive investigation utilising cable percussive or rotary coring techniques would be required to install deep groundwater monitoring installations. Any such additional deep investigation should also target locations such that the groundwater quality upgradient of the site where possible can also be determined in order to assess the general background quality of groundwater within the area.

4.8 Ground Gases & Vapours vs. End Users

In assessing the ground gases on the site, the site has been zoned to assess the south west portion where a new residential development is proposed separately from the reminder of the site which is associated with the area of infilled land and associated gas risk.

4.8.1 Landfill Area

The desk study identified the former Standen Landfill across the majority of the site, which was being utilised as open space, recreation ground for campers, pasture for livestock and as such it was considered that there was a potential risk with respect to ground gases associated with the infilled materials.

The monitoring wells WS02 to WS12 were located across the site to provide general coverage of the waste mass identified and to target boundaries of the waste. WS07 and WS08 were located in areas where natural ground was encountered however WS07 was noted to be located on the boundary of the former waste area and as such has been assessed with the landfill area.

To date the standpipes within WS02 to WS12 have been 'spot' monitored for methane, carbon dioxide, oxygen, VOC and borehole gas flow on twelve occasions on the between the 30th July and 21st December 2018.

During the monitoring visits, methane was recorded in the range of 0.0% - 53.0% v/v, whilst carbon dioxide and oxygen were present in the range 0.0% - 62.0% v/v and 0% - 22.0% v/v respectively. Positive borehole flow up to 38.0l/hr were detected on the site with highest positive flows recorded within WS02, WS09 and WS12. In addition, negligible VOCs were recorded as ranging between 0.0ppm and 1.2ppm. The atmospheric pressure was recorded as ranging between 984mb and 1016mb. The highest methane concentrations recorded were noted to be within WS02, WS08, WS09 and WS12. The highest carbon dioxide concentrations were recorded within WS06.

It should be noted that any remediation works comprising the installation of a cap to the former landfill area (subject to the materials utilised) to be protective of human health and controlled water will also need to be designed to take account of the high levels of methane being identified within monitoring wells on the site. Changes in the capping system in this area and any reduction in infiltration through the site are likely to affect the existing gassing regime of the site. Any cap will need to be designed to take account of any potential changes to prevent the build-up of gases or the creation of migrations pathways. Further monitoring should

be undertaken following any remediation works on the site.

It is recommended that the capping system installed include a gas venting layer in order to mitigate potential issues that may arise in terms of a potentially changing gassing regime during any works on site.

4.8.2 South West

The desk study did not identify any potential sources of ground gases within the area of the proposed residential development with the exception of an isolated area of Made Ground, however there remains a potential risk associated from landfill gas generated from the adjacent are of former landfill.

WS01 and WS07 monitoring wells were located in areas where natural ground was encountered however WS07 was noted to be located on the boundary of the former waste area and as such has been assessed with the landfill area.

To date the standpipe within WS01 has been 'spot' monitored for methane, carbon dioxide, oxygen, VOC and borehole gas flow on twelve occasions between the 30th July and 21st December 2018.

During the monitoring visits, methane was not recorded within the standpipe WS01, whilst carbon dioxide and oxygen were present in the range 0.0% - 3.1% v/v and 17.1% - 21.3% v/v respectively. Positive borehole flows up to 0.1l/hr were recorded during the monitoring visits undertaken. In addition, negligible VOCs were recorded as ranging between 0.0ppm and 0.1ppm. The atmospheric pressure was recorded as ranging between 984mb and 1016mb. WS01 was also noted to be dry during the monitoring visit undertaken to date.

Based on the findings of the desk study and the results of the monitoring visits, it is considered that the risk to the site which is located up topographical gradient from the landfill mass on site is considered to be low.

4.9 Ground Gases & Vapours vs. Adjacent Land Users

The ground gas monitoring undertaken on the site has identified the presence of ground gases at concentrations requiring remediation measures with respect to human health and potentially soft landscaping and public open space. As such it is considered that potential pollutant linkages exist. However it should be noted that the highest concentrations of ground gases have been identified within the former landfill area within the site with substantially lower concentrations detected at or close to the waste boundaries and reducing further within natural soils suggesting that ground gases are not currently migrating off the site at concentrations which could pose a risk to adjacent land uses which comprise a mix of open space, residential housing, road network.

However, in line with best practice, measures should be undertaken on site to ensure that any proposed development or remediation measures do not create potential migration pathways in relation to adjacent land users.

4.10 Ground Gases & Vapours vs. Soft Landscaping

Several trees on the boundaries of the landfill site were noted to be in a poor state of health and this is considered to be potentially associated with the presence of methane and carbon dioxide identified in relation to the landfilled materials on the site.

A potential source of ground gases has been identified on the subject site itself associated with historical infilling activities on the site. In addition, VOCs up to 1.2ppm have currently been recorded. Concentrations of carbon dioxide up to 62.0% have been identified beneath the site, whilst methane has been recorded at concentrations up to 53.0%.

It is understood that improvement proposals are looking to utilise the former infilled area as open space and pasture on the site. At this stage it is understood that the primary venting of land gases on the site is through the limited capping system and directly to atmosphere with some limited migration through the sub-surface on the site. The nature of the capping system on the site currently is considered to be inadequate for the proposed end use and it is likely that the capping system on the site will need to be re-engineered. At such time re-engineering of the capping system will need to be carefully considered to ensure that the gas migration pathways and current gassing regime are not significantly altered on site. Such measures should account for soft landscaping as well as human health. It is recommended that consideration be given to installing gas vents across the area of the landfill waste body to create preferential flow pathways that can be located away from key receptors to include vegetation.

4.11 Waste Disposal

Waste Acceptance Criteria (WAC) testing was outside the scope of investigation works undertaken on the site as it is understood that works that may require the excavation or removal of the waste materials identified on the site are unlikely to be required.

Based on the analysis undertaken from representative samples of the shallow natural soils across the site it is considered the natural soils beneath the site would likely comprise inert waste for the purpose of disposal. However, should soils for disposal be identified, Waste Acceptance Criteria (WAC) should be carried out to classify them for the purpose of disposal.

4.11.1 Reuse of Material

Where remediation measure are proposed that include the installation of a capping across the area of the former landfill to reduce infiltration through the site, consideration should be given to utilising the definition of waste Code of Practice (DoWCoP) to source materials for these works in line with an agreed Remediation Method Statement for the site.

In accordance with CL:AIRE Code of Practice (2011) materials are only considered waste if 'they are discarded, intended to be discarded or required to be discarded by the holder'.

The Code of Practice therefore allows soils to be reused on site where the following criteria are met:

- Pollution of the environment and harm to human health is prevented in reusing the excavated materials;
- The material are suitable for use (without any further processing);
- There is certainty of use; and
- The quantity that is absolutely necessary (and no more) is used.

In order to comply with the Code of Practice, a material management plan that confirms the above criteria are met has to be prepared. The material management plan must be reviewed by a 'Qualified Person' who then issues a declaration to the Environment Agency. Geo-Environmental can provide this service should it be required.

Where materials do not meet the required criteria, it may be possible to treat them under an environmental permit so that they may be re-used on site.

4.11.2 Reuse of Waste

Where material is discarded as waste, it may still be possible to reuse the waste on site under a standard rules environmental permit or a U1 waste exemption. However, strict limits on the volumes that can be reused apply in these cases.

4.11.3 Disposal to Landfill

Under current legislation, where wastes are to be disposed of to landfill they may, depending on their classification, require pre-treatment. Pre-treatment shall comprise a chemical, physical (including sorting), thermal or biological process. The pre-treatment is required to change the characteristics of the waste, reduce its volume, reduce its hazardous nature, and facilitate its handling and enhance its recovery.

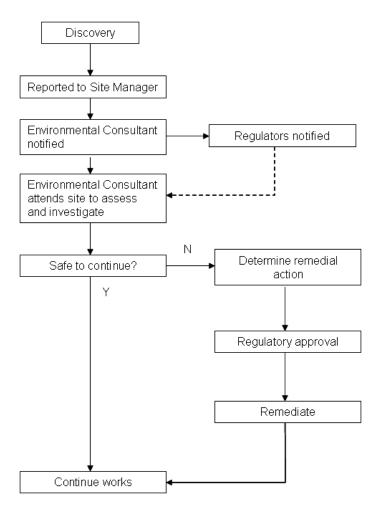
4.12 Discovery Strategy

Whilst an intrusive investigation has been undertaken on the site, it remains possible that unexpected soil conditions may be encountered during the process of construction.

Should previously undiscovered conditions be encountered during construction by the ground workers, this should be reported to the site manager immediately in order that any necessary inspection may be made. Records should be kept, and samples submitted for analysis where conditions encountered are not as anticipated. The results of any such testing should be sent to the authorities for consultation.

A copy of the discovery strategy should be lodged on site, and provisions made to ensure that all workers are made aware of their responsibility to observe, report, and act on any potentially suspicious or contaminated materials they may encounter.

Depending on the type, nature and extent of any such 'discovery', it may be necessary to halt works in that location until such time as the assessment has been completed. This should be reviewed on a 'discovery' specific basis and in conjunction with regulatory consultation.


As a general guide, where such unexpected conditions are encountered the following approach is recommended:

- All discoveries are to be reported to the Site Manager immediately and works at that location are to halt until further notice;
- The Site Manager is to report any such discoveries to the Client and the Environmental Consultant;
- Following notification from the Site Manager, the Environmental Consultant shall discuss the discovery with the Local Authority and if considered necessary, arrange to meet an Officer on site to view the discovery;
- The Environmental Consultant shall attend the site to record the location, extent and nature of the discovery and implement an appropriate sampling and analysis regime, taking due account of the type and nature of the discovery, known and probable land uses in that area of the site;
- Where remedial action is required, regulatory consultation and approval will be sought;
- A record will be produced by the Environmental Consultant and held on site (with copies held by

the Environmental Consultant, Client and Local Authority), detailing the discovery, assessment works undertaken, findings thereof, confirmation either of no action required or detailing the remedial action taken and validation thereof.

The process is shown below.

Chart 1 Discovery Strategy Process

Caveat

The data collected from the investigations have been used to provide an interpretation of the geoenvironmental conditions pertaining to the site. The recommendations and opinions expressed in this report are based on the data obtained.

Geo-Environmental Service Limited takes no responsibility for conditions that either have not been revealed in the available records, or that occurs between or under points of physical investigation. Whilst every effort has been made to interpret the conditions, such information is only indicative and liability cannot be accepted for its accuracy.

Information contained in this report is intended for the use of the client and their agents, and Geo-Environmental Services Limited can take no responsibility for the use of this information by any third party for uses other than that described in this report.

It should be noted that in particular the concentrations and levels of mobile liquid and gaseous materials are likely to vary with time. The results obtained may therefore only be representative of the conditions at the time of sampling. Such reservations have been indicated in the text where such conditions are considered to apply.

Geo-Environmental Services Limited does not indemnify any third parties such as the vendor against any dispute or claim arising from any finding or result of this investigation or any claim or dispute arising as a result of any decisions made thereof.

FIGURES

Project:	Evergreen Farm, East Gri	nstead		Title	Site Location Plan		
Client:	TJS Services Limited			Geo-Environmental Services Ltd Unit 7 Danworth Farm, Cuckfield Road			
Ref No:	GE17326	Revision:	0				
Drawn:	LL	Date:	15/06/2018]	Hurstpierpoint, West Sussex BN6 9GL		
Figure:	1	Scale:	Not To Scale		+44(0)1273 832972 www.gesl.net		

Project:	Evergreen Farm,	East Grinstead		Title	Site Plan		
Client:	TJS Services Lim	ited			Geo-Environmental Services Ltd		
Ref No:	GE17326	6 Revision: 0			Unit 7 Danworth Farm, Cuckfield Road		
Drawn:	LL	Date:	15/06/2018		Hurstpierpoint, West Sussex BN6 9GL		
Figure:	2	Scale:	Scale: Not To Scale		+44(0)1273 832972 www.gesl.net		

Project Title: Evergreen Farm,

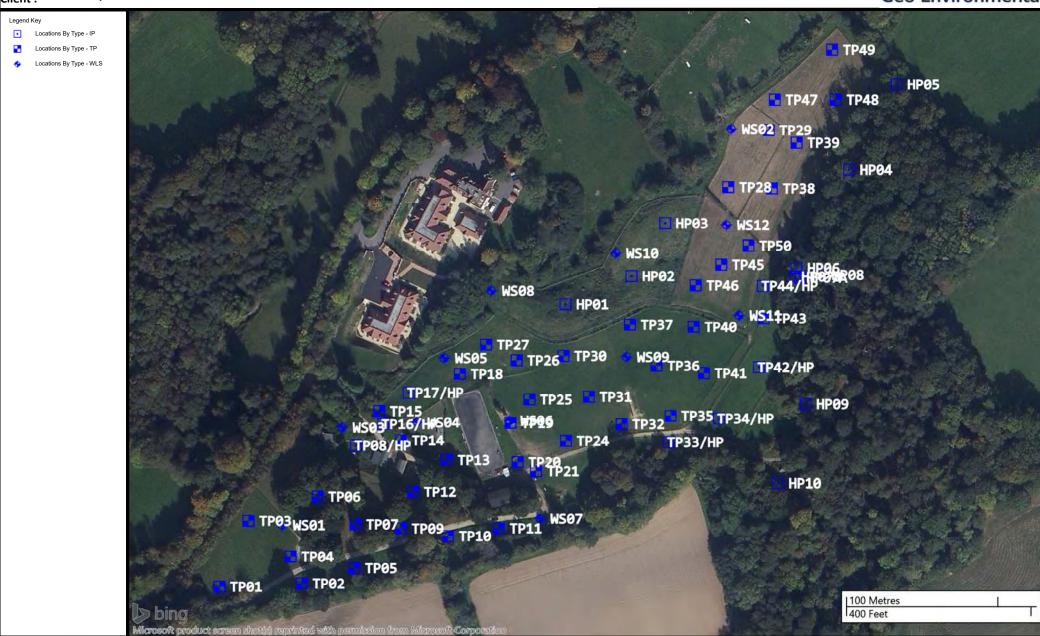
Title: Figure 3 - Exploratory Hole Location Plan

Location:

West Hoathly Road, East Grinstead

Scale: 1:2500

Project No. :


GE17326

Engineer:

Laura Legate

Client: TJS Services Limited

Project Id: GE17326

Project Title: Evergreen Farm,

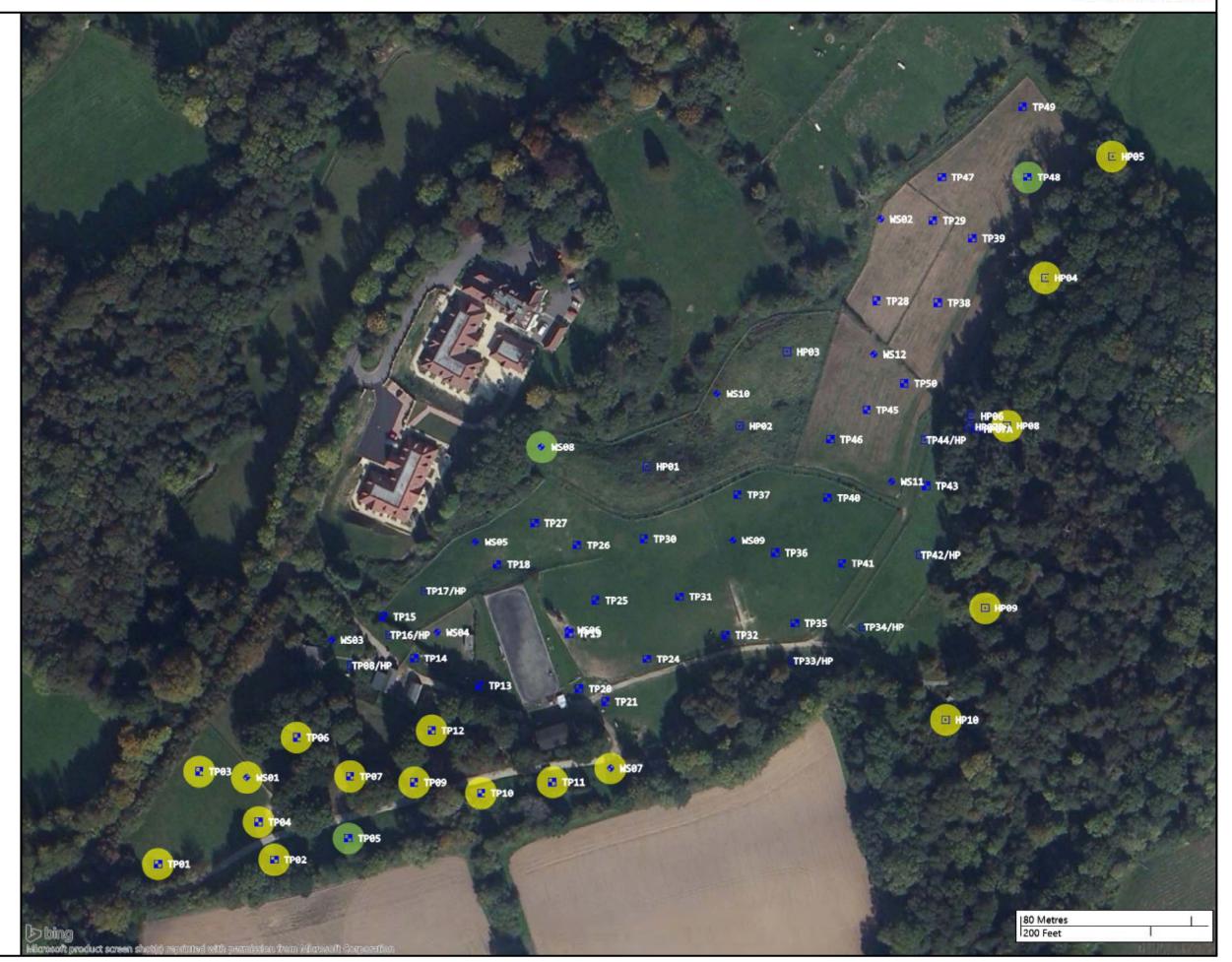
Location: West Hoathly Road, East Grinstead

Client: TJS Services Limited

Title: Figure 4 - Plan showing location of Natural Soils encountered

Scale: 1:1750 Engineer: Laura Legate

Legend Key


Locations By Type - IP

Locations By Type - TP

Locations By Type - WLS

Natural Soils - Natural Soils

Natural Soils at Depth - Natural Soils at Depth

APPENDIX A

Site Photographs

Site Photographs provided by the client showing the stream, iron oxide and leachate.

Plate 1

Plate 2

Plate 3

Plate 4

Plate 5

Plate 6

Plate 7

Photographs taken during site walkover on the 10th May 2018

Plate 8

Plate 9 – View looking north east

Plate 10

Plate 11 - Vegetation along the stream bed

Plate 12 – Evidence of ecology on site, appears to be a burrow

Plate 13

Plate 14 – View of exposed ground on slope down towards stream

Plate 15 - Evidence of Made and waste material at ground surface

Plate 16 – Site boundaries and neighbouring land

Plate 17 - Evidence of vegetation clearance on site

Plate 18 – View looking north east half way up slope

Plate 19 – View looking north on the eastern portion of the site

Plate 20 – Stream bed looking west from eastern end of the site

Plate 21

Plate 22 – Evidence of iron staining within the soils

Plate 23 – Evidence of Iron staining of soils

Plate 24 – Evidence of exposed ground within grassed areas of site

Plate 25

Plate 26 – Stream located on norther portion of site flowing west to east

Plate 27

Plate 28

Plate 29

Plate 30

Plate 31 - Eastern area of site

Plate 32 – Evidence of destressed trees

Plate 33 - Services on site

Photos taken during site investigation works on 12th July 2018

Plate 34 – Drilling within the woodland

Plate 35 – Embankment behind wood Store

Plate 36 – Embankment next to wood store

Plate 37 - Embankment next to wood store

Plate 38– Embankment next to wood store

Plate 39- Embankment next to wood store

Plate 40 - Embankment next to wood store

Plate 41 - Embankment next to wood store

Plate 42 - Embankment next to wood store

Plate 43 - Location of HP7A

Plate 44 – Location of HP7B

Plate 45 – View of the Badger Set within woodland and area of burnt organic material

Plate 46 - Looking at woodland with Badger Set from wood store

Plate 47 – View of the wood store

Plate 48 – Woodland behind badger set.

Plate 49 – Woodland behind Badger set

Plate 50 – Woodland behind Badger set

Plate 51 – Woodland behind Badger set

Plate 52 – Woodland behind badger set.

Plate 53 – Woodland behind badger set.

APPENDIX B Exploratory Hole Logs

								Trialpit N	0		
Geo-Environmental				Trial Pit Log							
							Sheet 1 of	f 1			
Project Name: Evergreen Farm,		Projec			Co-ords: 539019.90 - 136301.34	Date					
Name: Evergreen Farm,			GE17	326		Level: 106.10 Dimensions	06/07/2018				
Locati	on: West Ho	athly R	oad, East Grinstead				(m):	Scale 1:10			
Client:	: TJSSe	T J S Services Limited					Depth 0.40	Logged VB			
Water Strike	Sample	es and	s and In Situ Testing		Level	Legen					
	Depth	Туре	Results	(m)	(m)	Legend					
							Pale brown silty sandy gravel. Gravel is subang plastic, flint and brick.	gular tile,	_		
	0.10	ES					MADE GROUND		_		
	0.10								_		
									_		
									_		
									_		
									-		
				0.40	105.70		End of pit at 0.40 m		_		
							End of pit at 0.40 m		-		
									_		
									-		
									-		
									-		
									-		
									=		
									-		
									-		
									-		
									-		
									1 -		
									-		
									-		
									-		
									-		
									-		
									-		
									_		
									_		
									-		
									-		
									-		
									-		
									-		
									-		
									-		
									-		
									-		
									2 -		

Remarks: Backfilled with arisings on completion

Stability: Sides stable

										Trialpit No
Geo-Environmental				Trial Pit Log						
						3			Sheet 1 of 1	
Project	Everare	en Farm		Projec			Co-ords: 539	063.23 - 13	6321.47	Date
Name:	Lvergre	ciii aiiii	,	GE17	326		Level: 104	.78		06/07/2018
Location: West Hoathly Road, East Grinstead					Dimensions (m):			Scale 1:10		
Client:	TICC	ervices L	imited				Depth			Logged
Ciletti.							0.50			VB
ike			n Situ Testing	Depth	Level	Legend	i	Stratur	n Description	
Water Strike	Depth 0.30	ES	Results	0.50	104.28	Legend		ravelly sand alk JND	n Description y silt. Gravel is plastic	2, flint,
										2
Remar	ks. Back	filled with	n arisings on comple	etion						-
Stabilit		s stable	i anomyo on compi	Caori						AGS

Stability:

Sides stable

				_			Т	Tal. 1. 20 82
						一 !	ial Dittas	Trialpit No
Coc E-	vironmental					ır	ial Pit Log	HP03
				<u> </u>	1.51.			Sheet 1 of 1
Projec Name	t Evergree	en Farm	1,	Project GE17			Co-ords: 539084.54 - 136356.95 Level: 99.43	Date 06/07/2018
Locati		athly D	oad, East Grinstead	JOETT	020		Dimensions	Scale
		auny ixi	Jau, Last Gillisteau				(m): Depth	1:10 Logged
Client:	T J S Se	rvices L	imited				0.50	VB
ke te	Sample	s and I	n Situ Testing	Depth	Level	Legend	Stratum Description	
Water Strike	Depth	Туре	Results	(m)	(m)	xxxxxxxx		1 6: 1
Wa Str	Depth 0.20	ES	Results	0.50	98.93		Pale brown gravelly sandy silt. Gravel is subang brick, plastic. Chalk and flint. Rare glass and copipe. MADE GROUND Find of pit at 0.50 m	gular flint opper
								2 -
Rema	rks: Backf	illed wit	h arisings on completi	on		1	1	

									Trialpit No
						Tri	ial Pit L	.og	HP04
	vironmental								Sheet 1 of 1
Project Name:	Evergree	en Farm,		Projec			Co-ords: 539205.00) - 136395.00	Date
				GE17	326		Level: Dimensions		12/07/2018 Scale
Locatio	n: West Ho	athly Ro	ad, East Grinstead				(m):		1:10
Client:	TJSSe	rvices Li	mited				Depth 1.00		Logged
- a	Sample	es and Ir	n Situ Testing	Depth	Level				JK
Water	Depth	Туре	Results	(m)	(m)	Legeno		ratum Description silt with frequent rootlets an groots	id .
				0.10			Orangish brown, br with frequent rootle and inclusions TUNBRIDGE WELI	own and grey mottled sand s and occasional siltstone .S SAND	y SILT lenses
				1.00		××××		End of pit at 1.00 m	1
Remark		filled with	n arisings on comple	etion					AGS

									Trialpit No
						Tri	ial Pit L	og	HP05
Geo-Er	nvironmental								Sheet 1 of 1
Projec Name	ct Evergr	een Farm	l,	Project GE17			Co-ords: 539235.00 Level:	- 136453.00	Date 12/07/2018
Locati	on: West H	loathly R	oad, East Grinstead	I			Dimensions (m):		Scale 1:10
Client	: TJSS	Services L	imited				Depth 1.00		Logged
ke te	Samp	les and l	n Situ Testing	Depth	Level	Legeno		atum Description	<u> </u>
Water Strike	Depth	Туре	Results	(m)	(m)		Light greyish brown	sandy silt with abundant ro	ootlets
				0.10			TOPSOIL		
				0.10		× × × × ×	TUNBRIDGE WELLS	grey mottled sandy SILT S SAND	-
						(-
						× × × × × × × × × × × × × × ×			-
						× × × ×			-
						X X X X X X X X X X X X X X X X X X X	<u> </u>		-
						××××			-
						X X X X X X X X X X X X X X X X X X X			_
						X X X X X X X X X X X X X X X X X X X	<u> </u>		_
						$\times \times $			
						X X X X X X X X X X X X X X X X X X X			-
						(
						$\times \times $			
						(
				4.00		(-
				1.00				End of pit at 1.00 m	1 -
									-
									-
									-
									-
									-
									-
									2 -
Rema	rks: Bac	kfilled wit	h arisings on compl	etion					
Stahili		ac etabla							AGS

								Trialpit No	_
Ca- !						Tri	al Pit Log	HP06	
Geo-En	vironmental							Sheet 1 of 1	
Project Name:	t Evergreer	n Farm,		Project GE17			Co-ords: 539172.00 - 136329.00 Level:	Date 12/07/2018	
Locatio	on: West Hoa	athly Ro	ad, East Grinstead				Dimensions (m):	Scale 1:10	
Client:	T J S Ser	vices Li	mited				Depth 0.90	Logged JK	_
er (e	Samples	s and In	Situ Testing	Depth	Level	Legeno	Stratum Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
							Light greyish brown sandy silt with frequent roo MADE GROUND	tlets	
				0.10			Concrete		
							MADE GROUND		
				0.25					
				0.23			Unknown, concrete pushed to 0.90m in liner MADE GROUND		
									_
									-
				0.90			End of pit at 0.90 m		
								1 -	_
									-
									-
									-
								2 -	_
Remar	rks: Backfil	led with	arisings on completion	on .					_

								Trialpit No
						Tr	ial Pit Log	HP07A
Geo-Er	nvironmental							Sheet 1 of 1
Projec	t Evergre	en Farm	٦,	Projec			Co-ords: 539175.00 - 136323.00	Date
Name	:			GE17	326		Level:	12/07/2018
Locati	on: West Ho	oathly R	oad, East Grinstead				Dimensions (m):	Scale 1:10
Client	: TJSS6	ervices l	_imited				Depth 0.05	Logged JK
Water Strike		1	In Situ Testing	Depth	Level	Legend	Stratum Description	
St X	Depth	Туре	Results	(m)	(m)	X///X///		
	0.00 - 0.05	ES		0.05			Orangish brown and dark brown organic sandy TOPSOIL	silt .
							End of pit at 0.05 m	
								_
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								1 -
								-
								-
								_
								-
								-
								2 -
Doma	rka: Daak	fillod wit	th arisings on complet			•	•	

								Trialpit No	
						Tri	ial Pit Log	HP07B	
Geo-Er	nvironmental					'		Sheet 1 of	1
Projec	ct Evergree	en Farm		Projec			Co-ords: 539171.00 - 136324.00	Date	
Name	:		,	GE17	326		Level:	12/07/2018	3
Locati	on: West Ho	athly Ro	oad, East Grinstead				Dimensions (m):	Scale 1:10	
Client	: TJSSe	rvices L	imited				Depth 0.10	Logged JK	
Water Strike		es and Ir	n Situ Testing	Depth	Level	Legeno	d Stratum Description		
Wa	Depth 0.00 - 0.10	Type ES	Results	(m)	(m)	V//8///8	Dark brown and occasionally grey mottled org	rania aandu	
	0.00 - 0.10	ES					silt with abundant leaves and twigs	Janic Sandy	
				0.10			TOPSOIL End of pit at 0.10 m		
									-
									1 -
									_
									2 -
Rema	rks: Backf	n arisings on completi	on			I		_	

									Trialpit No
Project No. Co-ords: S39189.00 - 193225.00 Date 12/07/2018 Dogston: West Hoshthy Road, East Grinstead Dimensions (m)							Tr	ial Pit Log	HP08
Name: Evergreen ram. GE17326 Level: 12,077,2018 Scale 1.00	Geo-Env	/ironmental							
Collection West Hoathly Road, East Grinstead Client T.J.S. Services Limited Client T.J.S. Services Limited Client Clayged Clayge	Project	Evergree	n Farm,						
Collection T.J.S. Services Limited Colleged Col			=		GE 17.	320			
Samples and in Situ Testing Depth Type Results 0.10 0.10 First oranges holder sand roots (2.5 mm) TUNBRIDGE WELLS SAND 0.75 First to self oranges how and greysh blue mottled selly CLAY with frequent looks seeks (ferrughous). WADHURST CLAY 1.00 1	Locatio	n: West Hoa	athly Roa	ad, East Grinstead				(m):	1:10
Depth Type Results (m) (m) (egend Stratum Description Stratum Description (m) (egend Stratum Stratum Description (egend Stratum Stratum Description (egend Stratum Str	Client:	T J S Ser	vices Lin	mited					
Brown sandy silk with frequent rootiets and roots (2-2-min) TOPSOIL Light gray and orange motted sandy SILT with frequent roots (6-10-min) TOB SOIL TOBLE WELLS SAND Firm to stiff orangieh brown and grayleh blue mattled silty CLOW with frequent block specks (ferruginous). WADHURST CLAY 1.00 The orange of the stiff orangieh brown and grayleh blue mattled silty occasional siltstone inclusions and roots (1-3mm) WADHURST CLAY 1.00 The orange of the stiff orangieh brown and grayleh blue mattled silty occasional siltstone inclusions and roots (1-3mm) ADHURST CLAY 1.00	ke te	Samples	s and In	Situ Testing			Legend	Stratum Description	
0.75 Camming	Stri	Depth	Туре	Results	(m)	(m)	xxxxxxx		
1.00 Find of pit at 1 00 m 1								(2-5mm) TOPSOIL Light grey and orange mottled sandy SILT with roots (3-10mm) TUNBRIDGE WELLS SAND	-
					0.75		× × × × × × × × × × × × × × × × × × ×	CLAY with frequent black specks (ferruginous), occasional siltstone inclusions and roots (1-3mr	-
					1.00			End of pit at 1.00 m	
Pamarks: Rackfilled with arisings on completion	<u> </u>		u						2 -

								Trialpit	No
						Tri	al Pit Log	НР0	
	vironmental							Sheet 1	
Project Name:	t Evergree	en Farm	١,	Project GE17			Co-ords: 539181.00 - 136239.00 Level:	Date 12/07/20	
		othly D	and Fact Crinatons	I	020		Dimensions	Scale	
Location	on. West no	aully Ro	oad, East Grinstead				(m):	1:10	
Client:	T J S Se	rvices L	imited				Depth 1.00	Logge JK	eu
Water Strike		1	n Situ Testing	Depth	Level	Legeno	Stratum Description		
₩ ŧ̄̄̄̄	Depth	Туре	Results	(m)	(m)	\(\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Greyish brown sandy silt with frequent rootlet	<u> </u>	1
				0.10			TOPSOIL		
				0.10		X X X X X X X X X X X X X X X X X X X	occasional sinstone inclusions and lenses	y SILT with	-
						(TUNBRIDGE WELLS SAND		-
						(}		-
						××××	}		-
						(₹		-
						(₹		
						X X X X X	*		_
						X X X X X X X X X X X X X X X X X X X	*		-
						××××	*		-
						(₹		-
						(₹		-
						X X X X X	*		-
						X X X X	*		
						××××			_
						X X X X X X X X X X X X X X X X X X X	₹		-
				1.00		(XXX)			1 -
									-
									-
									_
									-
									-
									-
									-
									_
									-
									-
									-
									-
									-
									2 —
Remar		filled wit	h arisings on compl	etion	ı	1	1	AC	I SS

								Trialpit No
						Tri	ial Pit Log	HP10
Geo-En	vironmental							Sheet 1 of 1
Projec Name:	t Evergre	en Farm	,	Project GE17			Co-ords: 539164.00 - 136186.00 Level:	Date 12/07/2018
Location	on: West Ho	athly R	oad, East Grinstead				Dimensions (m):	Scale
Client:	TJSSe	ervices L	imited				Depth	1:10 Logged
			n Situ Testing	Donth	Lovel		1.00	_ JK
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	
				1.00			TUNBRIDGE WELLS SAND	rick (likely to -
Remar	rks: Back	lled wit	h arisings on comple	tion				2 -
Stahilit		e etable	anomys on comple					AGS

Coo F						Tr	rial Pit Log	TrialPit	1
			yesi.net	Proj	ect No.		Co-ords: 538794.69 - 136108.15	Sheet 1 Date	
Projec Name	Evergre	een Farm,			7326		Level: 136.01	06/07/20	018
Locati	on: West H	loathly Roa	ad, East Grinstead				Dimensions 2.30 (m):	Scale 1:25	
Client		Services Lir					(m): Depth 0.90	Logge JK	
Water Strike	Depth	amples & In S	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.10	ES		0.00	425.04		Light greyish brown sandy silt with frequent rootle TOPSOIL		-
	0.70	ES		0.20	135.81		Light orangish brown and light brown mottled silty medium SAND with occasional sandstone inclusic ARDINGLY SANDSTONE MEMBER	fine to ons	-
				0.90	135.11		End of Pit at 0.90m		2 -
									3 —
									4
Depth Strike	Water Strikes Rose to (mbgl)	Remarks Stability	Backfilled with arisings Sides stable	on comp	letion	1		AG	S

Geo-E	nvironme	Hurst BN6				Tr	rial Pit Log ™	Pit No P02 t 1 of 1
Projec Name		een Farm,	<u> </u>	Proj	ect No.			ate
Name	Evergre	een rann,		GE1	17326			7/2018
Locati	on: West H	oathly Roa	ad, East Grinstead					cale :25
Client:		ervices Lir			ı	ı	(m):	gged JK
Water Strike	Sa Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.15	ES		0.26	120.37		Greyish brown sandy silt with frequent rootlets TOPSOIL Orangish brown and occasionally grey mottled sandy	-
	0.50	ES					SILT with occasional sandstone inclusions ARDINGLY SANDSTONE MEMBER	
				0.70	119.93		End of Pit at 0.70m	 - - - - 1 -
								2 —
								3
								4
								5 —
Depth Strike		Remarks	Backfilled with arisings Sides stable	on comp	letion			AGS

Geo-E	nvironme	Hurst BN6				Tr	rial Pit Log	TrialPit TP03 Sheet 1	3
Project Name		een Farm,	<u> </u>		ject No.		Co-ords: 538812.94 - 136152.24	Date	
				GE′	17326		Level: 132.81 Dimensions 2.70	05/07/20 Scale	
Locati	on: West H	loathly Roa	ad, East Grinstead				(m): 00	1:25	
Client:	TJSS	Services Lir	mited				Depth o 1.00	Logge JK	d
Water Strike		amples & In S		Depth (m)	Level (m)	Legend	Stratum Description		
> 00	Depth 0.10	Type	Results				Light brown sandy silt with frequent rootlets TOPSOIL		_ _ _
	0.70	ES		0.20	132.61	X X X X X X X X X X X X X X X X X X X	Orangish brown and occasionally light brown silty medium SAND ARDINGLY SANDSTONE MEMBER	,	
				1.00	131.81		End of Pit at 1.00m		2
									3
Depth Strike	office States (ming)	Remarks	Backfilled with arisings	On comp	letion.				5
espet MINNE	· · · · · · · · · · · · · · · · · · ·	Stability	Sides stable	511 00111µ				AC	S

Geo-E Project	nvironmer t Evergree	Hurstp BN6 9			ect No.	Tr	rial Pit Log Co-ords: 538841.58 - 136129.34	TrialPit TP04 Sheet 1 Date	4 of 1
			d, East Grinstead	GE′	17326		Level: 133.32 Dimensions 2.50	06/07/20 Scale	9
Client:		ervices Lim					(m): 09 Depth 0: 0.50	1:25 Logge JK	
Water Strike		mples & In Si	-	Depth (m)	Level (m)	Legend	Stratum Description	UIX	
	0.20 0.40	ES ES	Results	0.30	133.02		Light greyish brown sandy silt with frequent rootle TOPSOIL Orangish brown and light brown mottled silty fine medium SAND with occasional sandstone inclusic ARDINGLY SANDSTONE MEMBER End of Pit at 0.50m	and	1 2 3 3
Depth Strike			Backfilled with arisings	on comp	letion			AC	

Geo-E	Environme	Unit 7 Hurst _l BN6 9 entalwww.				Tr	rial Pit Log	TrialPit TP05 Sheet 1	5
Projed Name	ct Evergr	een Farm,			ect No.		Co-ords: 538884.10 - 136122.78	Date	
		Hoathly Roa	id, East Grinstead	GET	7326		Level: Dimensions 2.10	06/07/20 Scale	:
Client		Services Lin					(m): 09 Depth 0	1:25 Logge	
		samples & In S					0.95	JK	
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50	ES		0.80			Greyish brown sandy silt with abundant brick, con plastic, slate, wire and metal MADE GROUND Orangish brown sandy SILT with occasional sands inclusions ARDINGLY SANDSTONE MEMBER End of Pit at 0.95m		1 1 3 1 1 1 1 1 1 1
									5 —
Depth Strike	Water Strikes Rose to (mbgl)	Remarks	Backfilled with arisings	on compl	letion				
		Stability	Sides unstable					AG	S

Geo-l	Environme	Hurst BN6				Tr	rial Pit Log	TrialPit TP06 Sheet 1	ô
Projed Name		en Farm,	-	1 -	ect No.		Co-ords: 538858.41 - 136169.50 Level:	Date 06/07/20	
Locati	ion: West H	oathly Roa	ad, East Grinstead				Dimensions 2.30	Scale 1:25	;
Client	: TJSS	ervices Lir	nited				(m): Depth 6 0.70	Logge JK	
Water Strike	Sa Depth	Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	0.1	
	0.15	ES		0.25			Light greyish brown sandy silt with frequent rootlet occasional roots (1-5mm) TOPSOIL Light orangish brown and light yellowish brown mousilty fine and medium SAND with occasional sand inclusions ARDINGLY SANDSTONE MEMBER	ottled	
									1 —
									2
									3
									4
Depth Strike		Remarks	Backfilled with arisings	on comp	letion			AG	S

		Hurst BN6 9				Tr	rial Pit Log	ialPit N	,
	nvironme	ntalwww.	gesl.net	Due:	NI-		She	eet 1 c	of 1
Project Name:	t Evergre	een Farm,			ect No. 7326		Co-ords: 538884.07 - 136151.82 Level: 06	Date //07/20	18
		oathly Roa	ad, East Grinstead				Dimensions 2.40	Scale	
Client:	TJSS	ervices Lir	mited		T		(m):	1:25 ogged JK	l
Water Strike		amples & In S	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
3 00	Depth 0.15	Type ES	Results	0.25			Light greyish brown sandy silt with frequent rootlets and roots (1-10mm) TOPSOIL Light orangish brown and occasionally grey and light yellow mottled silty medium SAND with occasional sandstone inclusions ARDINGLY SANDSTONE MEMBER		
	0.80	ES		1.00			End of Pit at 1.00m		1 —
									2 —
									3 -
									4
V Depth Strike		Remarks Stability	Backfilled with arisings	on comp	letion			AG	5 — S

						_	–	Trialpit No
						Ir	ial Pit Log	TP08/HP
Geo-Er	nvironmental							Sheet 1 of 1
Projec	t Evergre	en Farm	1,	Projec			Co-ords: 538883.16 - 136203.98	Date
Name	-			GE17	326		Level: 121.00 Dimensions	09/07/2018 Scale
Locati	on: West Ho	oathly R	oad, East Grinstead				(m):	1:10
Client	: TJSS	ervices L	imited				Depth 1.00	Logged DW
e a	Sampl	es and I	n Situ Testing	Depth	Level			DVV
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	d Stratum Description	
	0.10	ES		0.15	120.85		Brown slightly gravelly silty sand with some fine MADE GROUND Brown gravelly sandy silt. Gravel is fine to coar clinker and flint MADE GROUND	-
				0.50	120.50		Dark brown gravelly silty sand. Gravel is fine to brick clinker and flint and rare concrete MADE GROUND	o coarse
	0.70	ES		1.00	120.00		End of pit at 1.00 m	- - - - - 1
							End of pit at 1.00 m	
								-
								-
								-
								-
								-
								-
								-
								-
								-
					1			2 -

Remarks: Backfilled with arisings on completion

Stability: Sides stable

Geo-l	Environme	Hurstp BN6 9				Tr	rial Pit Log	TrialPit TP09 Sheet 1	9
Projec		een Farm,	d Foot Origotood		ect No. 7326		Co-ords: 538914.36 - 136149.79 Level: 128.93 Dimensions 1.85	Date 06/07/20 Scale)18
			d, East Grinstead				(m): 09 Depth 0	1:25 Logge	
Client		ervices Lim					0.50	JK	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.10	ES		0.25	128.68		Light yellowish brown sandy SILT with frequent silts inclusions ARDINGLY SANDSTONE MEMBER End of Pit at 0.50m	stone	1 2 3
									4
Depth Strike			Backfilled with arisings of Sides stable	on comp	letion	1		AG	S

Geo-E	nvironme	Hurst BN6				Tr	rial Pit Log	TrialPit TP10 Sheet 1	0
Projec Name:	t Evergre	een Farm,			ect No. 17326		Co-ords: 538945.93 - 136145.66 Level: 127.32	Date 06/07/20	
		loathly Roa	ad, East Grinstead	OL.	17020		Dimensions 1.80	Scale)
Client:	TJSS	ervices Lir	mited				Depth \circ	1:25 Logge	
		amples & In S		Depth	Level	l	0.70	JK	
Water	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.10	ES		0.20	127.12	*	Dark brown sandy silt with frequent roots (1-2mm) TOPSOIL Light yellowish brown silty fine and medium SAND frequent live and decaying roots (2-150mm) ARDINGLY SANDSTONE MEMBER		
	0.60	ES		0.70	126.62		End of Pit at 0.70m		1 1 1 1 1 1 1 1 1 1
									2
									3
									4
Depth Strike	Nater Strikes Rose to (mbgl)	Remarks	Backfilled with arisings Sides stable	on comp	letion	1		AG	S

Geo-E	nvironme	Unit I Hurst BN6 entalwww.				Tr	rial Pit Log	TrialPit TP17 Sheet 1	1
Projec Name:	t Evergre	een Farm,		1 -	ect No. 7326		Co-ords: 538979.54 - 136151.66 Level: 123.98	Date 06/07/20	
		loathly Roa	ad, East Grinstead	OL I	7020		Dimensions 1.90	Scale	
Client:		Services Li					(m): 09 O	1:25 Logge	d
		amples & In S	Situ Testing	Depth	Level		0.60	JK	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.10	ES		0.20	123.78		Light greyish brown sandy silt with frequent rootle TOPSOIL Light yellowish brown and orange brown mottled sand medium SAND with occasional sandstone in ARDINGLY SANDSTONE MEMBER		
	0.50	ES		0.60	123.38		Ēnd of Pit at 0.60m		1
									2 —
									3 —
									4 —
V Depth Strike	Vater Strikes Rose to (mbgl)	Remarks	Backfilled with arisings	on comp	letion				5 —
-report GUINE	Anaene and (THISSE)	Stability	Sides stable	on comp	iouon			AG	S

Geo-l	Environme	Hurst _i BN6 9				Tr	rial Pit Log TrialF	12
Projed Name		een Farm,		1 -	ect No. 7326		Co-ords: 538921.91 - 136174.46 Da Level: 123.05 06/07	te
		oathly Roa	nd, East Grinstead	GET	7320		Dimensions 1.90 Sca	ale
Client		ervices Lin					(m): 09	ged
Water Strike		amples & In S	itu Testina	Depth	Level		0.90 J	ζ
Wa	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.25	ES		0.50	122.55		Light greyish brown sandy silt with frequent rootlets TOPSOIL Orangish brown and occasionally grey mottled silty fine	-
	0.80	ES		0.90	122.15	X X X X X X X X X X X X X X X X X X X	and medium SAND with occasional sandstone inclusions ARDINGLY SANDSTONE MEMBER	- - - - -
								1
Depth Strike	Water Strikes Rose to (mbgf)	Remarks	Backfilled with arisings of Sides stable	on compl	 letion		A	GS

Coo En	vironment	Hurst BN6 9		1		Tr	rial Pit Log	TrialPit	3
	vironmen	Laiwww.	gesi.net	Droi	ect No.		Co-ords: 538943.71 - 136196.15	Sheet 1	
Project Name:	Evergree	n Farm,			7326		Level: 120.36	06/07/2	
	n: West He	athly Dog	ad, East Grinstead				Dimensions 2.20	Scale	Э
							(m): 09 Depth 0	1:25	
Client:	T J S Sei	vices Lir	nited				Depth ö 0.85	Logge JK	ea
Water Strike	Sam	ples & In S	Situ Testing	Depth	Level	Legend	Stratum Description		
iş iş	Depth	Туре	Results	(m)	(m)	Logona			
	0.10	ES					Light greyish brown sandy silt with frequent and concrete	rootlets, brick	-
				0.25	120.11		MADE GROUND Greyish brown silty sand with frequent brick	concrete	-
							tarmacadam and timber MADE GROUND	concrete,	_
							WADE GROUND		_
	0.70	ES							-
	0.70			0.85	119.51				_
				0.65	119.51		End of Pit at 0.85m] -
									1 -
									_
									-
									-
									-
									-
									2 -
									-
									_
									_
									-
									-
									=
									3 -
									-
									-
									_
									-
									-
									-
									4 -
									-
									-
									-
									-
									-
									-
									5 —

Remarks Large object at base of trench causing the sides of pit to lift and collapse. Backfilled with arisings on completion

Stability Sides unstable

Project No. Co ords: 538912.94 - 136208.24 Doze	Geo-En	vironme	Unit 7 Hurst BN6 9 ntalwww.				Tr	rial Pit Log	TrialPit TP14 Sheet 1	4
Collectic Collectic Collectic Collectic Collectic T J S Services Limited Collectic T J S Services Limited Collectic Co	Project Name:	Evergre	een Farm,		_ I			Co-ords: 538912.94 - 136208.24		
Cilient: T J S Services Limited Samples & In Stitu Testing Depth Type Results O 10 ES O 20 119.46 O 770 ES 1.00 118.66 Romarks Beackflilled with arinings on completion		n: West H	oathly Roa	ad, East Grinstead	02			Dimensions 2.20	Scale)
Signature S. In Situ Testing Depth Type Results (m) Level (m) Legend Stratum Description O. 10 ES O. 20 119-40 O. 20 119-40 O. 20 119-40 O. 20 119-40 O. 20 0. 20								Depth \circ	Logge	
Dark brown sardy all with frequent rockets and occasional brick, concrete and plastic MADE GROUND Drown sardy all With frequent brick, concrete and occasional brick, concrete and surprise with salight organic materials and tops with a slight organic materials and tops with a slight organic materials and tops with a slight organic materials. 1.00 118.66 Driving Pilat 100m 1 2 2 3 3 3 3 3 3 3 3				Situ Testina	Donth	Lovel			JK_	
O.70 ES O.70 I19-46 O.70 MADE GROUND O.70 ES O.70 I19-86 O.70 I	Wate	Depth	Туре				Legend	Stratum Description		
1.00 118.66 End of PRI at 1.00m 1		0.10	ES		0.20	119.46		occasional brick, concrete and plastic MADE GROUND Brown sandy silt with frequent brick, concrete and occasional plastic, tarmacadam and rope with a sl organic malodour	l light	
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0.70	ES		1.00	118.66				- - - - - - 1
	Wate	r SS-Res								3
	Wate Depth Strike	r Strikes Rose to (mbgl)	Remarks	Backfilled with arisings of	on comp	letion				ם ב

Geo-F	nvironme	Hurst BN6				Tr	rial Pit Log TrialPit N TP15 Sheet 1 o	<u>, </u>
Project	t France	een Farm,	<u> </u>	Proje	ect No.		Co-ords: 538897.82 - 136227.24 Date	1 1
Name:	Evergre	een rann,		GE1	7326		Level: 118.84 06/07/201	18
Location	on: West H	loathly Roa	ad, East Grinstead					
Client:	TJSS	Services Li	mited				(m): 99	ł
Water	Sa	amples & In S	Situ Testing	Depth	Level	Legend	Stratum Description	
% ts	Depth	Туре	Results	(m)	(m)	×××××××××××××××××××××××××××××××××××××××		
	0.40	ES		0.20	118.64		Dark greyish brown sandy silt with frequent rootlets and occasional brick and concrete MADE GROUND Dark greyish brown sandy silt with abundant brick, concrete and occasional plastic MADE GROUND	-
				0.60	118.24		End of Pit at 0.60m	-
								1
								2 —
								- - - - -
								3 -
								4 -
								-
V Depth Strike	Vater Strikes Rose to (mbgl)	Remarks	Backfilled with arisings	on compl	etion			5 -
Depth Strike	ruse to (mbgl)	Stability	Sides unstable	on compl	GuUH		AG	S

								Trialpit No
Con-Fi	nvironmental					Tri	ial Pit Log	TP16/HP
				Б				Sheet 1 of 1
Project Name	ct Evergree	en Farm	١,	Project GE173			Co-ords: 538900.74 - 136218.78 Level: 118.77	Date 09/07/2018
Locat		athly D	oad, East Grinstead	102			Dimensions	Scale
Local		atiliy ix	oau, Last Offisieau				(m): Depth	1:10
Client	:: TJSSe	rvices L	imited				0.70	Logged DW
ke te	Sample	s and l	n Situ Testing	Depth	Level	Legeno	d Stratum Description	
Water Strike	Depth	Туре	Results	(m)	(m)	Logoni		
	0.20	ES					Brown gravelly silty sand. Gravel is fine to coar clinker and flint MADE GROUND	se brick
				0.40	118.37		Orangish brown gravelly clayey sand. Gravel is	fine to
	0.50	F0					coarse brick clinker and flint MADE GROUND	-
	0.50	ES						
				0.70	118.07		End of pit at 0.70 m	
								-
								-
								1 -
								-
								-
								-
								-
								_
								-
								-
								2 -

Remarks:

Stability:

Backfilled with arisings on completion

								Trialpit N	lo
Coo F	S					Tri	ial Pit Log	TP17/H	ΗP
	nvironmental							Sheet 1 o	f 1
Project Name	ct Evergree	n Farm	١,	Project GE17			Co-ords: 538917.14 - 136240.05 Level: 115.24	Date 09/07/20	1Ω
		othly D	and Fact Crimatons	GE17	320		Dimensions	Scale	10
Locat	ion: vvest Ho	atniy R	oad, East Grinstead				(m):	1:10	
Client	:: T J S Sei	vices L	imited				Depth 0.60	Logged DW	i
e e	Sample	s and I	n Situ Testing	Depth	Level	Logona	Stratum Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
W. Str	0.20 0.50	ES	Results	0.60	114.64		Orangish brown silty gravelly sand. Gravel is fir coarse chalk and flint and rare brick MADE GROUND End of pit at 0.60 m	ne to	1 —
									2 -

Remarks: Backfilled with arisings on completion

Stability: Sides stable

Coo-	Environmen	Hurstpi BN6 90		n		Tr	rial Pit Log	TrialPit TP1 Sheet 1	8
Proje Name	ct Evergree		001.1101		ect No.		Co-ords: 538950.88 - 136253.29 Level: 115.95	Date 09/07/2	Э
			l, East Grinstead	'			Dimensions 2.40 (m): 09 Depth 0	Scal 1:25 Logge	5
Clien		rvices Limi					2.30	J Logge	
Water Strike	San Depth	Type	u Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.10	ES		0.20	115.75		Light greyish brown sandy silt with frequent occasional flint gravel and chalk MADE GROUND Light greyish brown silty sand with frequent chalk, concrete and brick MADE GROUND		
	0.50	ES		0.65	115.30		Dark grey and black mottled clayey gravelly frequent brick, concrete, occasional decayir plastic, wire, metal (rebar) and chalk MADE GROUND	sand with g timber,	- - - - - - -
	2.00	ES							2 -
				2.30	113.65		End of Pit at 2.30m		3 -
									-
									4 -

(mbgl)

Remarks Backfilled wi

Backfilled with arisings on completion

Stability Sides stable

Gen-l	Environmen	Hurstpi BN6 90		1		Tr	rial Pit Log	TrialPit TP19 Sheet 1	9
Proje	ot .			Proj	ject No.		Co-ords: 538985.38 - 136221.75	Date	
Name	e: Evergree	en Farm,		GE ²	17326		Level: 118.41	05/07/20	
Locat	ion: West Ho	athly Road	, East Grinstead				Dimensions 2.90 (m):	Scale 1:25	
Client	:: TJSSe	rvices Limi	ted				Depth 0	Logge	
se se	Sar	nples & In Situ	u Testing	Depth	Level		1.70	JK	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.20	ES		0.30	118.11		Light brownish grey silty sand with frequent flint of and brick MADE GROUND Brown silty sand with frequent brick, timber, plast and metal. MADE GROUND		-
	1.00	ES							1 -
	1.50	ES		1.30	117.11		Brown to black silty carbonaceous inclusions, but timber, glass, plastic and occasional metal MADE GROUND	rnt	- - - -
									3
									4 -

Remarks Hole abandoned at 1.70m bgl due to significant collapse. Backfilled with arisings on completion

Stability Sides unstable

		Hurst BN6 9				Tr	rial Pit Log	TrialPit TP20	o
-	invironme	ntalwww.	gesl.net	Drai	a at Na		Co. and a 539000 93 136105 07	Sheet 1	
Projec Name	t Evergre	en Farm,			ect No. 7326		Co-ords: 538990.83 - 136195.97 Level: 119.63	Date 11/07/20	
		oothly Dog	id, East Grinstead	OL I	7020		Dimensions 2.00	Scale	
							(m): 09 Depth 0	1:25	
Client	: TJSS	ervices Lin	nited				Depth 6 0.60	Logge JK	u
Water Strike	Sa	imples & In S	itu Testing	Depth	Level	Legend	Stratum Description		
% # <u></u>	Depth	Туре	Results	(m)	(m)	2090	·		
	0.05	ES		0.10	119.03		Light brown silty sand with frequent rootlets, flint g and rare brick MADE GROUND Light brown silty sand with frequent brick, glass, or and occasional plastic and timber MADE GROUND End of Pit at 0.80m	/	1 2 3
									5 —
Depth Strike	Water Strikes Rose to (mbgl)	Remarks	Backfilled with arisings of	on comp	letion				.
		Stability	Sides stable					AC	S

Geo-l	Environme	Hurst BN6 9				Tr	rial Pit Log	TrialPit TP2	1
Proje Name		een Farm,		1 -	ect No.		Co-ords: 539003.31 - 136190.14	Date	
			ad, East Grinstead	GE1	7326		Level: 120.63 Dimensions 1.50	06/07/20 Scale)
Client		ervices Lin					(m): 0 Depth 0	1:25 Logge	
		amples & In S	Situ Testina	D II.	1		0.40	JK	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.20	ES		0.15	120.48		Dark brown sandy silt with frequent rootlets MADE GROUND Light greyish brown silty sand with abundant brick, concrete, metal MADE GROUND End of Pit at 0.40m		1 2 3
									5 —
Depth Strik		Remarks Stability	Backfilled with arisings of Sides unstable	on comp	letion			AG	S

Project Name:	Evergreern: West Hoa	Hurst BN6 9 alwww.		Proj GE1	ect No. 17326	Tr	Co-ords: 539022.49 - 136210.85 Level: 119.96 Dimensions 2.80 (m): 99 Depth 9	TrialPit TP24 Sheet 1 Date 05/07/20 Scale 1:25	of 1 018
Client:	T J S Serv	ices Lin	nited				Depth o 2.00	Logge JK	d
Water			itu Testing	Depth (m)	Level (m)	Legend	Stratum Description		
A 89	Depth 0.30	Type ES	Results	0.40	119.56		Light brown sandy gravelly silt with frequent rootl occasional brick MADE GROUND Light brown silty sand with frequent brick, occasi plastic and timber MADE GROUND		
	1.00	ES		1.10	118.86		Dark brown to black sandy silt with abundant tarmacadam, clinker and brick MADE GROUND		1 -
	1.60	ES		2.00	117.96		End of Pit at 2.00m		2 —
									3 -
									4
Vis Depth Strike	ar Sirkes	marks	Backfilled with arising						5 —

		Hurst BN6 9 ntalwww.		Proi	ect No.	Tr	rial Pit Log Co-ords: 538997.45 - 136237.67	TrialPit TP25 Sheet 1 Date	5 of 1
Project Name:	Evergre	een Farm,			7326		Level: 116.30	05/07/20)18
Locatio	n: West H	oathly Roa	ad, East Grinstead				Dimensions	Scale 1:25	
Client:	TJSS	ervices Lir	nited				Depth 6 3.00	Logge JK	d
Water Strike	Sa Depth	Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50	ES	resolis	0.25	116.05		Light brown sandy silt with frequent rootlets MADE GROUND Light brown silty sand with abundant brick, tile, pla metal and glass MADE GROUND	astic,	1 —
	2.00	ES		1.60	114.70		Dark greenish brown and black sandy silt with free timber, brick and plastic and metal MADE GROUND	quent	2 —
	3.00	ES		3.00	113.30		End of Pit at 3.00m		3
									4
w	tater Strikes		Dayletta to the						5 —
Depth Strike	Rose to (mbgl)	Remarks	Backfilled with arisings of Sides stable	on comp	IETION			AG	S

Geo-E	nvironment	Hurstp BN6 9		1		Tr	rial Pit l	_00)	TrialPi	26
Projec	Evergree			Proj	ect No.		Co-ords: 538988	.21 - 13	6263.36	Dat	
Name:	Lvergree			GE′	17326		Level: 113.18		0.75	09/07/2	
Location	on: West Hoa	athly Road	d, East Grinstead				Dimensions (m):	0	2.75	Sca 1:2	
Client:	T J S Ser	vices Lim	ited				Depth 1.15	09.0		Logg	
ke ke	Sam	ples & In Sit	tu Testing	Depth	Level	Ī	1.15	<u> </u>		JIV	`
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			Description		
	0.10	ES		0.16	113.02		Light greyish brov and rootlets MADE GROUND Brown silty gravel concrete, and occ MADE GROUND	lly sand w	vith abundant b		
	1.00	ES		0.80	112.38		Dark greyish blac gravel, occasiona MADE GROUND	l plastic a		vith frequent flint	1 -
				1.15	112.03			End of	Pit at 1.15m		2 -
											4 -

Remarks Backfilled with arisings on completion

Sides unstable

Stability

AGS

Geo-E	nvironment	Hurstr BN6 9		n		Tr	rial Pit Log	TrialPit TP2 Sheet 1	7
Projec	t Everaree			Proj	ect No.		Co-ords: 538967.76 - 136273.38	Date	
Name:	Lvergree	iii aiiii,		GE′	17326		Level: 112.85	09/07/2	
Location	on: West Ho	athly Roa	d, East Grinstead				Dimensions 2.50 (m):	Scale 1:25	
Client:	T J S Ser	vices Lin	nited				(m): 99	Logge JK	ed
e. Ke	Sam	ples & In S	itu Testing	Depth	Level			JIX	
Water	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.10	ES		0.15	112.70		Light greyish brown sandy silt with frequent r flint gravel MADE GROUND Light greyish brown silty sand with frequent t concrete, gravel, occasional tarmacadam, ch timber	orick,	-
	0.50	ES		0.00	440.05		MADE GROUND		-
	1.00	ES		0.80	112.05		Dark grey to black silty sand with frequent br timber, occasional metal, plastic MADE GROUND	ick, burnt	1 -
									-
	2.00	ES		2.00	110.85		End of Pit at 2.00m		2 -
									-
									3
									4 -
									-

Remarks Backfilled with arisings on completion

Stability Sides unstable

Project Name: Evergreen Farm, Project No. GE17326 Co-ords: 539125.92 - 136382.03 Date 10/07/2018 Location: West Hoathly Road, East Grinstead Dimensions (m): Depth 3.00 2.60 Scale 1:25 Client: T J S Services Limited Depth 3.00 JK	Geo-E	nvironme	Hurst BN6 9				Tı	rial Pit Log	rialPit N	3
Depth Samples & In State Imited Depth Samples & In State Imited Depth Dept				<u>-</u>				Co-ords: 539125.92 - 136382.03	Date	
Cocarion Mark Mar					GE1	7326				
Samples & In Stur Testing Depth Type Results 0.50 ES 0.70 96.85 Dark greenish brown sity greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. 1.50 ES 2.50 ES 3.00 D4.55 Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. Dark greenish brown sity day with frequent codiets, occasional challs find gravel, and the carbonacoose includers. 2.500 ES									1:25	
Depth Type Results (n) (n) (n) Dark brown sity day with frequent rootiets, occasional blank MADE GROUND 1.50 ES 0.70 96.85 0.70 96.85 0.70 96.85 2.50 ES 3.00 94.85 3.00 94.85						ı		3.00	JK	,
Dark trown ally grawly sand with frequent roctiets, occasional chair. MADE GROUND Dark greenish brown ally play with frequent carbonaceous inclusions, occasional chair, first gravel, brick, metal with an organic metadotur MADE GROUND 1.50 ES 2.50 ES 3.00 94.55 3.00 94.55	Nater						Legend	Stratum Description		
2.50 ES 3.00 94.55 End of Pit at 3.00m 3 -		<u> </u>		results		96.85		occasional chalk MADE GROUND Dark greenish brown silty clay with frequent carbonaceous inclusions, occasional chalk, flint gravel, brick, metal with an organic malodour		1
3.00 94.55 End of Pit at 3.00m		1.50	ES							2 —
		2.50	ES		3.00	94.55		End of Pit at 3.00m		3 —
Witter Grands Remarks Remarks Backfilled with arisings on completion										
	Depth Strike	Vater Strikes Rose to (mbgl)	l Remarks	Backfilled with arisings	on comp	letion		<u>I</u>		

Geo-l	Environme	Hurst BN6 9				Tı	rial Pit Log	TrialPit TP29 Sheet 1	9
Projed Name	ct Evergre	een Farm,			ect No. 7326		Co-ords: 539151.68 - 136420.54 Level: 94.92	Date 10/07/20	
		loathly Roa	ad, East Grinstead	GEI	7320		Dimensions 2.30	Scale)
							(m): 09 Depth 0	1:25 Logge	
Client		ervices Lin					2.00	JK	
Water	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50	ES		0.10	94.82		Dark brown silty sand with frequent rootlets and fl gravel and occasional chalk MADE GROUND Light greyish brown silty gravelly sand with freque brick, chalk, concrete and occasional tarmacadam MADE GROUND	nt	
	1.50	ES		0.90	94.02		Dark greyish blue to black clayey sand with abunc carbonaceous inclusions, occasional chalk, timbe brick with an organic malodour MADE GROUND	lant r and	1 —
				2.00	92.92		End of Pit at 2.00m		2
									3
									4 —
Depth Strik	Water Strikes a Rose to (mbgf)	Remarks	Backfilled with arisings of	on comp	letion				5 —

Gen-F	nvironme	Hurst BN6				Tr	rial Pit Log	TrialPit I TP30 Sheet 1 o)
Project	<u> </u>		geomet	Proj	ect No.		Co-ords: 539019.37 - 136267.19	Date	ו וכ
Name:	Evergre	een Farm,		GE1	17326		Level: 112.58	05/07/20	
Locatio	n: West H	loathly Roa	ad, East Grinstead				Dimensions 2.90 (m):	Scale 1:25	
Client:	TJSS	ervices Li	mited				(m): 09	Logged	t
Water	Sa Depth	amples & In S	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	<u> </u>	
	0.10	ES		0.15	112.43		Light greyish brown gravelly sandy silt with frequen rootlets MADE GROUND Light greyish brown sandy silt with abundant brick, concrete and plastic MADE GROUND	it	
	0.50	ES		0.75	111.83		Black silty sand with abundant brick, concrete, tarmacadam, wires, plastic, timber and metal, rare shredded tyres, cables and heavy fabric sacks MADE GROUND		1 —
_	1.50	ES							2 —
	2.50	ES		3.00	109.58				3 —
				3.00	109.50		End of Pit at 3.00m		3
									4
									5 —
Depth Strike 2.00	Rose to (mbgl)	Remarks	Backfilled with arisings of	on comp	letion				
2.00	2.00	Stability	Sides unstable					AG	S

Sides unstable

Geo-l	Environme	Hurst BN6				Tı	rial Pit Log	TrialPit TP3	1
Proje Name	ct Evergro	een Farm,		1 -	ect No.		Co-ords: 539036.95 - 136240.54	Date	
		loothly Dog	ad Foot Crimotood	GE1	7326		Level: 117.17 Dimensions 2.80	05/07/20 Scale	
			ad, East Grinstead				(m): 99 Depth 0	1:25 Logge	4
Client		Services Lir				I	2.80	JK	u
Water Strike	Sa Depth	amples & In S	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50	ES		0.80	116.37		Light brown sandy silt with frequent rootlets and occasional brick, concrete and flint MADE GROUND Dark brownish grey sandy silt with frequent carbonaceous inclusions, tarmacadam and occas brick MADE GROUND	ional	1 —
	1.50	ES		1.80	115.37		Dark greenish grey sandy clayey silt with occasior black staining, tarmacadam and decaying rootlets brick and plastic MADE GROUND	nal , rare	2 —
	2.50	ES		2.80	114.37		End of Pit at 2.80m		3
									4
Depth Strik	Water Strikes e Rose to (mbgl)	Remarks	Compacted at base, diffi	icult to d	lig. Backfille	ed with aris	sings on completion		
		Stability	Sides stable					AG	S

Sides stable

Geo-Fr	environmenta	Hurstp BN6 9		m		Tr	rial Pit Log	TrialPit TP32 Sheet 1	2
Project				Proi	ect No.		Co-ords: 539059.14 - 136222.98	Date	
Name:	Evergreer	n Farm,			17326		Level: 118.42	11/07/20	
Locatio	n: West Hoa	thlv Roa	d, East Grinstead	d ' '			Dimensions 2.80	Scale)
				-			(m): Depth	1:25 Logge	d
Client:	T J S Serv				1		3.00	JK	
Water		oles & In Si		Depth (m)	Level (m)	Legend	Stratum Description		
S ω	Depth	Туре	Results	(111)	(111)		Greyish brown silty sand with frequent rootlets an	d glass	
	0.10	ES					and occasional metal MADE GROUND	a glaco,	-
				0.25	118.17		Light yellowish brown and orange brown mottled	silty	-
							sand with occasional sandstone, metal and tile MADE GROUND		-
	0.50	ES							-
				0.70	117.72		Dark greenish grey and black mottled silty sandy	clav	
							with frequent timber and occasional plastic MADE GROUND	Ciay	
							WADE GROUND		1 -
	1.20	ES							
									-
									-
									-
				1.80	116.62				-
							Dark greenish grey silty gravelly sand with freque concrete, carbonaceous inclusions, timber and ra	nt re brick	-
							MADE GROUND		2 -
									-
									-
	2.50	ES							
	2.30								-
									-
									-
				3.00	115.42		End of Pit at 3.00m		3 -
							End of the action		-
									-
									-
									-
									-
									-
									4 -
									-
									- -
									-
									-
									-

Remarks Backfilled with arisings on completion

Sides stable

Stability

								Trialpit No
Caa F.						Tr	ial Pit Log	TP33/HP
Geo-En	nvironmental							Sheet 1 of 1
Projec	t Evergree	n Farm		Projec			Co-ords: 539090.90 - 136211.81	Date
Name:	:		,	GE17	326		Level: 116.83	10/07/2018
Location	on: West Ho	athly Ro	oad, East Grinstead				Dimensions (m):	Scale 1:10
Client:	T J S Se	rvices L	imited				Depth 0.30	Logged JK
<u>_</u> 0	Sample	s and I	n Situ Testing	Depth	Level			0.0
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	d Stratum Description	
		,,					Greyish brown sandy silt with frequent rootlets	and
							occasional flint gravel (plastic mesh encountere immediately below surface)	ed -
							MADE GROUND	-
				0.15	116.68		Light grey sandy silt with abundant concrete ar	id rare
							brick MADE GROUND	-
							· · · · · · · · · · · · · · · · · · ·	-
				0.30	116.53		End of pit at 0.30 m	
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								1 -
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
								-
					1			2 -

Remarks: Refused on concrete at 0.30m bgl. Backfilled with arisings on completion

Stability: Sides stable

								Trialpit No
Geo-Env	ironmental					Tri	al Pit Log	TP34/HP
	IIOIIIIeiitai			Dania	4 NI=		0 500400 70, 400000 50	Sheet 1 of 1
Project Name:	Evergree	en Farm,		Project GE17			Co-ords: 539123.76 - 136228.52 Level: 115.41	Date 10/07/2018
	a: Most He	othly Do	ad Foot Crimatood	JOETT	020		Dimensions	Scale
Location	i. west no	auliy Ko	ad, East Grinstead				(m):	1:10
Client:	TJSSe	rvices Li	mited				Depth 1.00	Logged JK
er (e	Sample	es and Ir	Situ Testing	Depth	Level	Legeno	Stratum Description	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend		
				0.30	115.11		Light yellowish brown sandy silt with frequent re MADE GROUND Light brown and brown mottled silty sand with a rootlets and rare roots MADE GROUND	
	0.60	ES		0.55	114.86		Dark grey silty sand with occasional rootlets an brick MADE GROUND	id rare
				0.70	114.71		Yellowish brown silty sand with occasional sand inclusions MADE GROUND	dstone
	0.90	ES		0.85	114.56		Dark grey silty sand with occasional rootlets an carbonaceous inclusions MADE GROUND	nd .
				1.00	114.41		End of pit at 1.00 m	1

Remarks: Backfilled with arisings on completion

Stability: Sides stable

		Hurst BN6 9				Tr	rial Pit Log	TrialPit	
Geo-Er	nvironment	alwww.	gesl.net					Sheet 1	of 1
Project	Evergree	n Farm,			ect No.		Co-ords: 539091.56 - 136229.45	Date	
Name:				GE1	7326		Level: 116.91 Dimensions 2.60	11/07/20 Scale	
Locatio	n: West Hoa	thly Roa	d, East Grinstead				()	1:25	
Client:	T J S Ser	vices Lin	nited				Depth 0: 3.00	Logged JK	d
- e e	Sam	ples & In S	itu Testing	Depth	Level			JIX	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.40	ES					Light greyish brown silty sand with frequent rootle sandstone, concrete and rare brick MADE GROUND	ets,	11111111111111111
	1.30	ES		0.80	116.10		Dark greenish grey and black mottled silty sandy with frequent carbonaceous inclusions, occasionatarmacadam, timber, fabric, metal and rare tree tr decaying vegetation MADE GROUND	al brick,	1 —
	2.80	ES							2 —
				3.00	113.90		End of Pit at 3.00m		3
									4 —
Depth Strike	uter Strikes	emarks					filled with arisings on completion		5 —

Sides stable

Geo-	Environmen	Hurstp BN6 9		n		Tr	rial Pit Log	TrialPit TP30 Sheet 1	6
Proje	ct Evergree		<u>, </u>	Pro	ject No.		Co-ords: 539081.41 - 136262.31	Date	
Name	e: Evergree	aiii,		GE	17326		Level: 115.43	09/07/20	
Locat	ion: West Ho	athly Roa	d, East Grinstead				Dimensions 2.40 (m):	Scale 1:25	
Clien	t: TJSSe	rvices Lim	iited				(m): Depth 6 2.00	Logge JK	d
Water Strike	Sam	ples & In Si	tu Testing	Depth	Level	Legend	Stratum Description	_ OIX	
Stri	Depth	Туре	Results	(m)	(m)	Legend			
	0.10	ES		0.20	115.23		Light greyish brown sandy silt with frequent roo occasional flint gravel MADE GROUND Light greyish brown sandy silt with frequent bri concrete and occasional sandstone MADE GROUND		-
				0.85	114.58		Brown silty sand with frequent brick and concr occasional plastic and metal MADE GROUND	ete,	1 -
	1.50	ES		1.70	113.73		Dark grey to black silty sandy clay with frequer occasional chalk MADE GROUND	nt brick and	-
				2.00	110.40		End of Pit at 2.00m		2 -
									3 -
									4 -

Backfilled with arisings on completion

Stability Sides unstable

Project Name:	Evergreer	Hurst BN6 9 alwww. n Farm,		Proj GE1	ect No. 7326	Tr	Co-ords: 539062.99 - 136289.13 Level: 111.30 Dimensions 2.70 (m): 9	TrialPit I TP37 Sheet 1 o Date 09/07/20 Scale 1:25	7 of 1 018
Client:	T J S Sen	vices Lir	nited				Depth 6 3.00	Logged JK	d
Water Strike			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
30	Depth 0.50	Type ES	Results	0.20	111.10		Light brown silty sand with abundant rootlets and frequent flint gravel MADE GROUND Light greyish brown silty sand with frequent brick, gravel, concrete and occasional plastic, tarmacac metal MADE GROUND Dark grey to black sandy clay with frequent burnt brick, concrete, occasional plastic, timber, cinder	flint lam and timber,	-
	1.00	ES					polystyrene and chalk MADE GROUND		1 -
	2.00	ES							2 -
	3.00	ES		3.00	108.30		End of Pit at 3.00m		3 -
									4 —
W. Depth Sirke	ter Sphes Rose to (moly)	emarks	Backfilled with arisin		letion				5 —

Sides unstable

Geo-En	Vironme					Tr	rial Pit Log	TrialPit TP38 Sheet 1	3
Project			9001.1101	Proj	ect No.		Co-ords: 539154.93 - 136381.95	Date	
Name:	Evergr	een Farm,		GE1	17326		Level: 98.48	10/07/20	
Locatio	n: West H	loathly Roa	ad, East Grinstead				Dimensions 2.90 (m):	Scale 1:25	
Client:	TJSS	Services Lir	nited				(m): 09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Logge JK	
Water	S	amples & In S	Situ Testing	Depth	Level	Legend	Stratum Description	JIX	
ॐ क्र	Depth	Туре	Results	(m)	(m)	Logona			
	0.05	ES		0.10	98.38 97.83		Light brown sandy silt with frequent rootlets MADE GROUND Light greyish brown silty clayey sand with frequent brick, flint gravel, MADE GROUND Dark grey sandy gravelly clay with abundant brick, tarmacadam, concrete, occasional plastic, timber, r wire and an organic malodour MADE GROUND		
	1.25	ES							2
	2.75	ES		3.00	95.48		End of Pit at 3.00m		3
									4 —
	r Strikon								
Wats Depth Strike	r Strikes Rose to (mbgl)	Remarks	Backfilled with arisings of Sides unstable	on comp	letion			AG	S

Sides unstable

Geo-E	nvironment	Hurst BN6 9				Tr	rial Pit Log	TrialPit TP39 Sheet 1	9
Projec Name:	t Evergreer	n Farm,			ject No. 17326		Co-ords: 539170.39 - 136412.78 Level: 95.12	Date 10/07/20	
		thly Roa	ad, East Grinstead	OL	17020		Dimensions 2.95	Scale)
Client:							Depth 0	1:25 Logge	
Water Strike	Samp	oles & In S	Situ Testing	Depth	Level	Logand	2.00 Stratum Description	JK	
Stri	Depth	Туре	Results	(m) 0.05	(m) 95.07	Legend	Dark brown silty sand with frequent rootlets		
	0.70	ES		0.00	00.01		MADE GROUND Orangish brown and brown mottled sandy clay wi occasional timber and rare chalk MADE GROUND	th	1 —
	1.70	ES		1.20	93.92		Dark grey to black gravelly sand with abundant tarmacadam, frequent concrete, brick, plastic, me an organic malodour MADE GROUND	etal and	
				2.00	93.12		End of Pit at 2.00m		2
									3
									4
Depth Strike		emarks ability	Backfilled with arisings	on comp	pletion			AG	S

		Hurst BN6 9				Tr	rial Pit Log	TrialPit N)
Geo-En	vironment	alwww.	gesl.net					Sheet 1 d	of 1
Project Name:	Evergreer	n Farm,			ect No.		Co-ords: 539105.47 - 136288.78	Date	40
				GE1	7326		Level: 111.99 Dimensions 2.65	09/07/20 Scale	
Location	n: West Hoa	ithly Roa	d, East Grinstead				()	1:25	
Client:	T J S Ser	vices Lin	nited				(m): Depth 6 1.10	Logged JK	b
ë e	Samp	oles & In S	itu Testing	Depth	Level			JIX	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
				0.10	111.89		Light greyish brown sandy silt with frequent rootle occasional flint gravel MADE GROUND Light orangish brown silty sand and sandstone wi occasional brick	/	- - - - -
	0.50	ES					MADE GROUND		- - - -
	1.00	ES		0.75	111.24		Dark grey to black and dark blue mottled sandy cl occasional plastic, brick, tarmacadam, timber and chalk MADE GROUND	lay with	1 —
				1.10	110.89		End of Pit at 1.10m		. =
									2 —
									3
									4
Wate Depth Strike	r Strikes Rose to (mbgl)	emarks	Backfilled with arisings	on comp	letion				5 —

Sides unstable

AGS

Geo-l	Environme	Hurst BN6				Tı	rial Pit Log	TrialPit I	1
Projed Name	ct Evergre	en Farm,			ect No. 7326		Co-ords: 539112.94 - 136258.16 Level: 114.61	Date 11/07/20	18
Locati	ion: West H	oathly Roa	ad, East Grinstead				Dimensions 2.65 (m):	Scale 1:25	
Client	: TJSS	ervices Lir	mited				(m): Depth 6	Logged JK	d
Water Strike		imples & In S		Depth (m)	Level (m)	Legend	Stratum Description		
	Depth 0.50	ES	Results	0.80	113.80		Light greyish brown silty sand with frequent rootlet rare brick MADE GROUND Dark grey to black sandy silt with frequent carbona inclusions, plastic, brick, concrete, timber, occasio glass and metal MADE GROUND	aceous	1 -
	1.50	ES		2.00	112.60		End of Pit at 2.00m		2 1 1 1 1 1 1 1 1 1
									4 1 1 1 1 1 1 1 1 1
Depth Strike		Remarks Stability	Backfilled with arisings	on comp	l letion	<u> </u>	1	AG	S

Sides stable

								Trialpit No	
						Tri	ial Pit Log	TP42/HF	>
Geo-Ei	nvironmental							Sheet 1 of 1	
Proje	ct Evergre	en Farm	٦,	Projec			Co-ords: 539149.59 - 136263.14	Date	
Name	9:		,	GE17	326		Level: 112.23	10/07/2018	
Locat	ion: West Ho	athly R	oad, East Grinstead				Dimensions (m):	Scale 1:10	
Client	:: TJSSe	ervices L	_imited				Depth 1.00	Logged DW	
e e	Sample	es and l	In Situ Testing	Depth	Level		Otanti una Danaminti an		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
							Light greyish brown slightly clayey silty sand MADE GROUND		
	0.10	ES					52 6.18 6.18		
	0.10								
				0.20	112.03				
				0.20	112.00		Reworked orangish brown silty sand MADE GROUND		-
									_
									_
									-
	0.50	ES							_
									-
									-
									-
									-
									-
				0.80	111.43		Reworked greyish brown silty sandy clay		-
							MADE GRŎUŃD		-
	0.90	ES							-
									-
				1.00	111.23		End of pit at 1.00 m	1	_
									-
									-
									-
									-
									-
									_
									_
									_
									-
									-
									-
									-
									-
									-
									-
									-
								,	

Remarks: Backfilled with arisings on completion

Stability: Sides stable

Gen-Fr	e					Tr	rial Pit Log TrialPi	13
Project		een Farm,	90001	Proj	ect No.		Co-ords: 539151.56 - 136295.66 Dat	
Name:				GE1	7326		Level: 108.56 11/07/2 Dimensions 2.70 Sca	
Locatio	n: West H	loathly Roa	ad, East Grinstead				(m): 00 1:2	5
Client:		Services Lir			T		Depth o Logg 2.00 Jk	ea
Water Strike	Sa Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.50	ES		0.80	107.76		Brown silty sand and clay with frequent brick, concrete, chalk, tarmacadam and occasional metal, glass and plastic MADE GROUND Dark grey to black silty gravelly sand with abundant tarmacadam, carbonaceous inclusions, concrete, brick and occasional plastic and timber MADE GROUND	1
•	1.90	ES		2.00	106.56		End of Pit at 2.00m	- 2 —
								3
								4
Depth Strike	Rose to (mbgl)	Remarks	Significant collapse and	obstruct	tions in pit.	Backfilled	with arisings on completion	
1.00	1.00	Stability	Sides unstable				A	GS

Sides unstable

									_
								Trialpit No	
Con-Fi	nvironmental					Tr	ial Pit Log	TP44/HP)
				D				Sheet 1 of 1	
Project Name	ct Evergree	en Farm	١,	Project GE17			Co-ords: 539150.72 - 136317.31 Level: 105.76	Date 10/07/2018	
Locat		athly P	oad, East Grinstead				Dimensions	Scale	_
Local	- vvest ric	atiliy ix	oau, Last Offisieau				(m): Depth	1:10	_
Client	:: TJSSe	ervices L	imited				1.00	Logged DW	
ter ke	Sample	es and l	n Situ Testing	Depth	Level	Legend	d Stratum Description		
Water Strike	Depth	Туре	Results	(m)	(m)	×××××××		-1:- £:	
							Greyish brown slightly gravelly silty sand. Grave to coarse brick and flint	ei is fine	-
							MADE GROUND		-
	0.20	ES							-
									-
				0.30	105.46		Greyish brown and orange silty sandy gravelly Gravel is fine to coarse brick, clinker and flint	clay.	
							MADE GROUND		
									_
									-
									-
	0.70	ES							
									-
				1.00	104.76		End of pit at 1.00 m	1	_
									-
									-
									-
									-
									-
									-
									-
									-
									-
									-
									-
									-
								2	_

Remarks:

Stability:

Backfilled with arisings on completion

Sides stable

Gen-l	Environment	Hurstp BN6 9		rm		Tr	rial Pit Log		TrialPit TP4 Sheet 1	5
Proje	ot .			Proi	ect No.		Co-ords: 539122.59 - 136	330.61	Date	
Name		n Farm,			7326		Level: 106.06		10/07/2	
Locat	ion: West Ho	athly Roa	d, East Grinstea	- I			Dimensions	2.50	Scale	
							(m): 09 Depth 0		1:25	
Client	:: TJS Sei	vices Lim	nited				Depth o 2.00		Logge JK	
Water Strike	Sam	ples & In Si	tu Testing	Depth	Level	Legend	Stratum	Description		
Str	Depth	Туре	Results	(m)	(m)	Logona				
	0.10	ES					Light greyish brown sandy s occasional brick	ilt with frequent roo	tlets and	
				0.25	105.80		MADE GROUND Light yellowish brown silty s	and with occasiona	I	-
							sandstone, brick, concrete a	and plastic	•	
	0.50	ES					WADE OROUND			-
				0.60	105.46		Dark brown gravelly sand w	ith frequent flint gra	vel,	1
							occasional brick, timber, pla MADE GROUND	stic and glass		
				0.90	105.16		Dark bluish green silty clay	with frequent carbo	naceous	1
							inclusions, chalk and rare be MADE GROUND	rick		1 -
	1.50	ES								
	1.50									
				2.00	104.06			rit at 2.00m		2 -
							End of F	nt at 2.00m		
										-
										3 -
										-
										4 -
										-
										5 -

Remarks

Backfilled with arisings on completion

Stability Sides unstable

Geo-F	nvironmenta	Hurstp BN6 9		m		Tr	rial Pit Log TrialPit TP46 Sheet 1	6
Project	<u> </u>		,	Proj	ect No.		Co-ords: 539105.94 - 136316.41 Date	
Name:	Evergreen	ı Farm,		I	7326		Level: 108.65 09/07/20	
Locatio	on: West Hoa	thly Road	d, East Grinstea	d			Dimensions 2.80 Scale (m): 9 1:25	
Client:	T J S Serv	ices Lim	itad				Depth O Logge	
		les & In Si					3.00 JK	
Water	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.30	ES					Light greyish brown silty sand with frequent rootlets (to 0.20m bgl) and occasional flint gravel, chalk and brick MADE GROUND	-
	0.90	ES		0.65	108.00		Light brown silty sand with frequent brick, concrete and occasional plastic and chalk MADE GROUND	1 =
				1.05	107.60		Dark grey to black and dark greenish blue mottled silty clay with frequent carbonaceous inclusions, occasional brick, tarmacadam, plastic, wire and metal MADE GROUND	1 -
	1.50	ES			405.05			2 -
	3.00	ES		3.00	105.65		End of Pit at 3.00m	4 -

Remarks Backfilled w

Backfilled with arisings on completion

Stability Sides stable

4		Hurstp BN6 9				Tr	rial Pit Log	TrialPit N	0
	vironme	ntalwww.g	jesl.net					Sheet 1 of	f 1
Project Name:	Evergre	een Farm,			ect No. 17326		Co-ords: 539155.10 - 136440.95 Level: 92.62	Date 10/07/201	0
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			GE	17320		Dimensions 2.60	Scale	0
Locatio	n: West H	oathly Road	d, East Grinstead				(m): 06	1:25	
Client:	TJSS	ervices Lim	ited				Depth 0 3.00	Logged JK	
ke të	Sa	amples & In Sit	tu Testing	Depth	Level	1			
Water	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.05	ES		0.10	92.52		Brown and light brown mottled silty sandy clay wil frequent rootlets MADE GROUND Orangish brown and grey mottled silty clay with ra	/	-
	0.50	ES					plastic MADE GROUND		-
				0.70	91.92		Dark grey to black sandy silt with abundant carbonaceous inclusions, frequent timber, brick, c occasional plastic and metal and an organic malo MADE GROUND	dour	1 -
	1.50	ES							2 -
	2.70	ES		3.00	89.62		End of Pit at 3.00m		3 -
									- - - - - -
									4 -
									-
									5 -
Wat Depth Strike			Backfilled with arisings	on comp	letion			AGS	3

Sides unstable

Geo-l	Environment	Hurst BN6		n		Tr	rial Pit Log	TrialPit N TP48 Sheet 1 o	3
Proje	ot .		<u> </u>	Proj	ject No.		Co-ords: 539195.68 - 136442.07	Date	01 1
Name		n Farm,		GE ²	17326		Level: 91.93	10/07/20	
Locat	ion: West Hoa	athly Roa	ad, East Grinstead				Dimensions 2.40 (m):	Scale 1:25	
Client	t: TJSSer	vices Lir	mited				Depth 0	Logged	d
			Situ Testing	5 "	Ι	Τ	2.70	JK_	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50	ES		0.10	91.83		Brown silty sand with frequent rootlets and flint gravel MADE GROUND Light yellow and brown mottled sandy clay timber MADE GROUND Dark greyish brown clayey sand with frequency, concrete	y with rare	
	1.50	ES					MADE GROUND		1 -
	2.10	ES		1.90	90.03		Greenish grey and black mottled sandy cl timber, carbonaceous inclusions, occasion MADE GROUND		2 -
	2.50 2.50	ES PP	PP=1.5kg/cm2	2.30	89.63	× × × × × × × × × × × × × × × × × × ×	Firm to stiff orangish brown and grey mott with frequent roots (3-25mm) WADHURST CLAY	eled silty CLAY	
				2.70	89.23	×	End of Pit at 2.70m		3 -
									4 -
									5 -

Remarks Backfilled with arisings on completion

Stability Sides unstable

Geo-E	Environmen	Hurstp BN6 9				Tı	rial Pit Log	TrialPit TP49 Sheet 1	9
Projec Name	t Evergree	en Farm,			ect No. 7326		Co-ords: 539192.46 - 136475.07 Level: 89.51	Date 10/07/20	
		athly Roa	d, East Grinstead	GE	7320		Dimensions 2.70	Scale	;
Client		ervices Lim					(m): 	1:25 Logge	
		nples & In Si		Depth	Level	Ι	3.00	JK	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.40	ES		0.60	88.91		Light brown sandy silt with abundant rootlets and frequent flint gravel, brick and occasional plastic MADE GROUND Dark grey to black silty gravelly sand with abundar carbonaceous inclusions, brick, concrete, metal, tarmacadam and plastic MADE GROUND	nt	1 —
	1.50	ES							2 —
	2.50	ES		3.00	86.51		End of Pit at 3.00m		3 —
									4
Depth Strike			Backfilled with arisings	on comp	letion			AG	S

Geo-l	Environment	Hurst BN6		1		Tr	rial Pit Log	TrialPit TP50 Sheet 1)
Proje				Proj	ect No.		Co-ords: 539140.24 - 136343.62	Date	
Name	Evergreei	n Farm,		GE1	7326		Level: 103.51	10/07/20	
Locat	ion: West Hoa	thly Roa	ad, East Grinstead				Dimensions 2.55 (m):	Scale 1:25	
Client	: TJSSer	vices Li	mited				Depth 0	Logge	d
			Situ Testing	5 "			1.35	JK	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.20	ES					Light greyish brown sandy silt with frequent rootlet: flint gravel MADE GROUND	s and	
	0.60	ES		0.40	103.11		Light brown and greyish brown mottled silty clayey with occasionally concrete MADE GROUND	sand	- - - - - -
	1.20	ES		0.90	102.61		Greyish green and brown mottled sandy clay with frequent carbonaceous inclusions, occasional chal MADE GROUND	lk, brick	1 - -
				1.35	102.16		End of Pit at 1.35m		3 -
									5 —

Remarks Backfilled with arisings on completion

Sides unstable

Stability

Unit 7, Danworth Farm Borehole No. Hurstpierpoint **Borehole Log WS01** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 538835E - 136150N Evergreen Farm, Project Name: WLS GE17326 Scale Location: West Hoathly Road, East Grinstead Level: 132.51 1:25 Logged By Dates: Client: T J S Services Limited 09/07/2018 DW Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Туре Results Light brown silty sand with occasional rootlets 0.20 132.31 Orangish brown grey mottled slightly clayey silty ARDINGLY SANDSTONE MEMBER 0.50 ES 0.80 131.71 Orangish brown grey mottled silty SAND ARDINGLY SANDSTONE MEMBER ES 1.50 2.40 130.11 Orangish brown grey mottled slightly clayey silty 2.50 ES ARDINGLY SANDSTONE MEMBER 3.50 ES 4.50 4.70 127.81 End of Borehole at 4.70m Water Strikes (mbgl) Depth Strike Rose to Chiselling (mbgl) Casing Diameter Depth (m) Refused on dense SAND at 4.70m bgl

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS02** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 539127E - 136421N Project Name: Evergreen Farm, GE17326 WLS Scale Location: West Hoathly Road, East Grinstead Level: 92.91 1:25 Logged By 10/07/2018 Client: T J S Services Limited Dates: DW Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Туре Results Light brown silty gravelly sand. Gravel is fine to coarse MADE GROUND 0.20 ES 0.60 92.31 Light brown and grey sandy gravelly clay. Gravel is fine to coarse chalk clinker and rare brick and flint 0.70 ES MADE GROUND 1.40 91.51 Dark brown and grey gravelly sandy clay. Gravel is fine to coarse brick concrete clinker and flint. Black stained wood at 2.70m bgl MADE GROUND 1.70 ES 2.70 ES 3.00 89.91 Firm to stiff yellowish brown grey mottled sandy CLAY WADHURST CLAY 3.70 4.70 ES 5.00 87.91 End of Borehole at 5.00m Water Strikes (mbgl) Chiselling (mbgl) Casing Diameter Depth (m) Remarks Hole collapsed to 4.50m bgl on completion. Standpipe installed to 4.50m 2.90 2.90 bgl

Unit 7, Danworth Farm Borehole No. Hurstpierpoint **Borehole Log WS03** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 538873E - 136216N Evergreen Farm, Project Name: GE17326 WLS Scale Location: West Hoathly Road, East Grinstead Level: 122.02 1:25 Logged By Dates: Client: T J S Services Limited 09/07/2018 DW Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Туре Results Brown slightly silty gravelly sand. Gravel is fine to coarse brick clinker flint and rare concrete MADE GROUND 0.20 ES 0.50 ES 1.00 121.02 Orangish brown silty sand MADE GROUND ES 1.50 1.60 120.42 Greenish grey clayey sand MADE GROUND 2.50 ES 3.00 119.02 End of Borehole at 3.00m Casing Water Strikes (mbgl) Diameter Depth (m) Depth Strike Rose to Chiselling (mbgl) Refused on concrete at 3.00m bgl. Collapsed to 2.60m bgl on completion. Standpipe installed to 2.60m bgl.

Unit 7, Danworth Farm Borehole No. Hurstpierpoint **Borehole Log WS04** BN6 9GL Geo-Environmentalwww.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 538923E - 136221N Evergreen Farm, Project Name: WLS GE17326 Scale Location: West Hoathly Road, East Grinstead Level: 119.10 1:25 Logged By Client: Dates: 09/07/2018 T J S Services Limited DW Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Туре Results Yellowish brown gravelly silty sand. Gravel is fine to coarse brick chalk and flint MADE GROUND 0.20 ES 0.30 118.80 Greenish grey gravelly sandy clay. Gravel is fine to coarse brick flint chalk and clinker and rare concrete MADE GROUND 0.50 ES ES 1.50 2.40 116.70 Greenish grey and black gravelly sandy clay. Gravel is 2.50 ES fine to coarse brick flint and clinker and rare ash glass and plastic MADE GROUND 3 3.50 ES 4.50 5.00 114.10 End of Borehole at 5.00m Casing Water Strikes (mbgl) Diameter Depth (m) Depth Strike Rose to Chiselling (mbgl) Standpipe installed to 5.00m bgl

Unit 7, Danworth Farm Borehole No. Hurstpierpoint **Borehole Log WS05** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 538940E - 136264N Project Name: Evergreen Farm, GE17326 WLS Scale Location: West Hoathly Road, East Grinstead Level: 113.54 1:25 Logged By Dates: Client: 06/07/2018 T J S Services Limited Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results Pale brown gravelly sandy clayey silt. Gravel is subangular flint, chalk, brick. MADE GROUND 0.50 ES 1.40 112.14 Stained blue black gravelly silty clay. Gravel is brick, ES 1.50 chalk and charcoal MADE GROUND 2.50 ES 3.50 4.50 ES 5.00 108.54 End of Borehole at 5.00m Casing Water Strikes (mbgl) Diameter Depth (m) Depth Strike Rose to Chiselling (mbgl) Standpipe installed to 5.00m bgl

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS06** BN6 9GL Geo-Environmentalwww.gesl.net Sheet 1 of 1 Project No. Hole Type 538985E - 136223N Co-ords: Project Name: Evergreen Farm, GE17326 WLS Scale Location: West Hoathly Road, East Grinstead Level: 118.33 1:25 Logged By Client: T J S Services Limited Dates: 10/07/2018 DW Sample and In Situ Testing Water Depth Level Stratum Description Well Legend (m) Strikes (m) Depth (m) Results Type Pale brown gravelly silty Sand with some fine rootlets. Gravel is prick, concrete, clinker wood and rare polystyrene MADE GROUND 0.20 ES 0.50 117.83 Greyish brown and orangish brown gravelly silty sandy clay. Gravel is fine to coarse brick concrete wood and rare plastic. Gravel of pulverised fuel ash 0.70 ES also present at 0.70m bgl MADE GROUND 1.70 ES 2.70 ES 2.70 115.63 Greyish brown and yellowish brown gravelly sandy clay. Gravel is fine to coarse brick concrete clinker wood and plastic. Pulverised fuel ash also present at 3.70m bgl MADE GROUND 3.70 4.70 ES 5.00 113.33 End of Borehole at 5.00m Water Strikes (mbgl) Chiselling (mbgl) Casing Diameter Depth (m) Remarks Hole collapsed to 3.00m bgl on completion. Standpipe installed to 3.00m 4.88 4.88 bgl

Borehole No. Unit 7, Danworth Farm **Borehole Log** Hurstpierpoint **WS07** BN6 9GL Geo-Environmentalwww.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 539007E - 136159N Evergreen Farm, Project Name: GE17326 WLS Scale Location: West Hoathly Road, East Grinstead Level: 122.17 1:25 Logged By Client: Dates: 09/07/2018 T J S Services Limited DW Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Results Type Dark brown silty sand with occasional rootlets. and ES 0.10 TOPSOIL 0.20 121.97 Orangish brown grey mottled silty SAND ARDINGLY SANDSTONE MEMBER 0.50 ES 120.87 1.30 Yellowish brown and grey silty SAND ARDINGLY SANDSTONE MEMBER 1.50 ES 1.60 120.57 Orangish brown silty SAND ARDINGLY SANDSTONE MEMBER 1.90 ES 2.00 120.17 End of Borehole at 2.00m Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Refused on dense SAND at 2.00m bgl. Standpipe installed to 2.00m bgl

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS08** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 538970E - 136309N Evergreen Farm, Project Name: WLS GE17326 Scale Location: West Hoathly Road, East Grinstead Level: 106.84 1:25 Logged By Dates: Client: 06/07/2018 T J S Services Limited Sample and In Situ Testing Water Depth Level Stratum Description Well Legend Strikes (m) (m) Depth (m) Туре Results Black, white and red mottled silty clayey gravel with abundant chalk, brick and charcoal MADE GROUND 0.30 ES 0.40 106.44 Orangish brown mottled white and red gravelly silty clay. Rare cobbles of cement. Gravel rounded flints, angular chalk, brick, tile plastic and wood MADE GROUND 1.00 ES 2.00 ES 2.10 104.74 Grey and black mottled gravelly clay with abundant chalk, brick and charcoal MADE GROUND 3.00 ES 3 4.00 ES 4.20 102.64 Stiff orange and grey mottled CLAY. WADHURST CLAY 4.50 4.50 ES PP 2.0kg/cm2 5.00 PP 2.8kg/cm2 5.00 101.84 End of Borehole at 5.00m Chiselling (mbgl) Depth from Depth Casing Diameter Depth (m) Water Strikes (mbgl) Standpipe installed to 5.00m bgl

Unit 7, Danworth Farm Borehole No. **Borehole Log** Hurstpierpoint **WS09** BN6 9GL Geo-Environmentalwww.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 539061E - 136268N Evergreen Farm, Project Name: GE17326 WLS Scale Location: West Hoathly Road, East Grinstead Level: 113.70 1:25 Logged By Dates: Client: T J S Services Limited 10/07/2018 DW Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results Yellowish brown silty gravelly sand. Gravel is sandstone and rare brick and flint MADE GROUND 0.20 ES 0.30 113.40 Orangish brown dravelly sandy clay. Gravel is brick clinker PFA and rare flint MADE GROUND 0.50 ES 1.10 112.60 Greyish brown silty sandy gravelly clay. Gravel is brick concrete clinker. Black staining and moderate hydrocarbon malodour at 1.50m bgl MADE GROUND ES 1.50 2.50 ES 3.50 3.60 110.10 End of Borehole at 3.60m Casing Water Strikes (mbgl) Diameter Depth (m) Depth Strike Rose to Chiselling (mbgl) Refused on concrete at 3.60m bgl

Unit 7, Danworth Farm Borehole No. Hurstpierpoint **Borehole Log WS10** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 539052E - 136336N Project Name: Evergreen Farm, GE17326 WLS Scale Location: West Hoathly Road, East Grinstead Level: 100.79 1:25 Logged By Dates: Client: 06/07/2018 T J S Services Limited Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results Pale brown mottled grey black gravelly silt with frequent flint, brick and timber. MADE GROUND 0.30 ES 0.80 99.99 End of Borehole at 0.80m Casing Water Strikes (mbgl) Diameter Depth (m) Depth Strike Rose to Chiselling (mbgl) Hole moved. First attempt hit a metal plate (0.10m bgl), second attempt hit metal (0.10m bgl), third attempt refused on concrete at 0.80m bgl.

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS11** BN6 9GL Geo-Environmental_{WWW}.gesl.net Sheet 1 of 1 Project No. Hole Type Co-ords: 539135E - 136297N Evergreen Farm, Project Name: GE17326 WLS Scale Location: West Hoathly Road, East Grinstead Level: 109.70 1:25 Logged By Client: Dates: 10/07/2018 T J S Services Limited DW Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Туре Results Pale brown slightly clayey gravelly sand. Gravel is fine to coarse brick flint and clinker and rare glass MADE GROUND 0.20 ES 0.40 109.30 Greyish brown and pale brown sandy gravelly clay. Gravel is fine to coarse brick flint and clinker MADE GROUND 0.60 ES 1.60 ES 2.40 107.30 Reddish brown silty gravelly clay. Gravel is fine to coarse flint MADE GROUND 2.60 ES 3.00 106.70 Greyish brown and orange sandy gravelly clay. Gravel is fine to coarse flint and clinker MADE GROUND 3.60 ES 4.60 5.00 104.70 End of Borehole at 5.00m Water Strikes (mbgl) Depth Strike Rose to Casing Diameter Depth (m) Chiselling (mbgl) Standpipe installed to 5.00m bgl

Borehole No. Unit 7, Danworth Farm Hurstpierpoint **Borehole Log WS12** BN6 9GL Geo-Environmentalwww.gesl.net Sheet 1 of 1 Project No. Hole Type 539125E - 136357N Co-ords: Project Name: Evergreen Farm, GE17326 WLS Scale Location: West Hoathly Road, East Grinstead Level: 101.86 1:25 Logged By Client: T J S Services Limited Dates: 10/07/2018 DW Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Туре Results Orangish brown silty sandy gravelly clay. Gravel is fine to coarse brick clinker flint and chalk MADE GROUND 0.20 ES 0.50 101.36 Greyish brown slightly gravelly sandy clay. Gravel is fine to coarse brick and flint and rare clinker and chalk MADE GROUND 0.70 ES 1.40 100.46 Orangish brown and grey silty clayey gravelly sand. Gravel is flint and concrete and rare brick MADE GROUND 1.70 ES 2.70 99.16 Greyish brown and black gravelly sandy clay. Gravel is 2.80 ES brick concrete clinker and flint and rare wood and MADE GROUND 3 3.80 4.80 ES 5.00 96.86 End of Borehole at 5.00m Water Strikes (mbgl) Chiselling (mbgl) Casing Diameter Depth (m) Standpipe installed to 5.00m bgl 3.20 3.20

APPENDIX C

Ground Gas and Leachate Monitoring Data

Project: Evergreen Farm, East Grinstead

Ref: GE17326 Client: AMV Haulage

										GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	IBC	
Location	Date	Time	CH ₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				CI		-	0,
2000000	2410	(sec)	(%)	(%)	-2 (1-)	(I/hr)	(ppm)	(mb)	(28.)	CH₄	CO ₂	CH ₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS01	30/07/18	0	0.0	0.0	20.9	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/07/18	10	0.0	0.6	20.5	0.0	0.0	995	Drv	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/07/18	20	0.0	0.6	20.5	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/07/18	30	0.0	0.6	20.4	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/07/18	60	0.0	0.6	20.4	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/07/18	90	0.0	0.6	20.4	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/07/18	120	0.0	0.6	20.4	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/07/18	180	0.0	0.6	20.4	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	10/08/18	0	0.0	0.0	20.9	0.0	0.1	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	10/08/18	10	0.0	1.7	19.2	0.0	0.1	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	10/08/18	20	0.0	1.9	18.7	0.0	0.1	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	10/08/18	30	0.0	1.9	18.6	0.0	0.1	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	10/08/18	60	0.0	2.0	18.5	0.0	0.1	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	10/08/18	90	0.0	2.0	18.5	0.0	0.1	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	10/08/18	120	0.0	2.0	18.5	0.0	0.1	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	10/08/18	180	0.0	2.0	18.5	0.0	0.1	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	24/08/18	0	0.0	0.0	20.9	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	24/08/18	10	0.0	2.6	17.9	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	24/08/18	20	0.0	2.7	17.7	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	24/08/18	30	0.0	2.8	17.7	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	24/08/18	60	0.0	2.8	17.6	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	24/08/18	90	0.0	2.9	17.6	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	24/08/18	120	0.0	2.9	17.6	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	24/08/18	180	0.0	2.9	17.6	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	07/09/18	0	0.0	0.0	20.0	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	07/09/18	10	0.0	0.9	19.1	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	07/09/18	20	0.0	2.7	17.8	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	07/09/18	30	0.0	2.9	17.6	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	07/09/18	60	0.0	3.0	17.5	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	07/09/18	90	0.0	3.1	17.4	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	07/09/18	120	0.0	3.1	17.4	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	07/09/18	180	0.0	3.1	17.4	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/09/18	0	0.0	0.0	20.9	0.0	0.0	992	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/09/18	10	0.0	1.0	18.9	0.0	0.0	992	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/09/18	20	0.0	3.2	17.4	0.0	0.0	992	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/09/18	30	0.0	3.4	17.2	0.0	0.0	992	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/09/18	60	0.0	3.5	17.1	0.0	0.0	992	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/09/18	90	0.0	3.5	17.1	0.0	0.0	992	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/09/18	120	0.0	3.5	17.1	0.0	0.0	992	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/09/18	180	0.0	3.5	17.1	0.0	0.0	992	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	05/10/18	0	0.0	0.0	20.9	0.0	0.0	997	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	05/10/18	10	0.0	3.1	18.1	0.0	0.0	997	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	05/10/18	20	0.0	3.2	18.0	0.0	0.0	997	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	05/10/18	30	0.0	3.2	17.9	0.0	0.0	997	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	05/10/18	60	0.0	3.2	17.9	0.0	0.0	997	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	05/10/18	90	0.0	3.2	17.9	0.0	0.0	997	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	05/10/18	120	0.0	3.2	17.9	0.0	0.0	997	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
									,						_					Í

Project: Evergreen Farm, East Grinstead

Ref: GE17326 Client: AMV Haulage

										GSV	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	le Check		NH	IBC	
Location	Date	Time	CH ₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)		T T		& C665				С	H ₄	-	0,
Location	Date	(sec)	(%)	(%)	02 (70)	(I/hr)	(ppm)	(mb)	GWE (III bgi)	CH ₄	CO ₂	CH ₄	CO ₂	Flow	CH₄	CO ₂	GSV	Conc.	GSV	Conc.
WS01	05/10/18	180	0.0	3.3	17.9	0.0	0.0	997	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	19/10/18	0	0.0	0.0	20.9	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	19/10/18	10	0.0	3.1	17.8	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	19/10/18	20	0.0	3.3	17.2	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	19/10/18	30	0.0	3.4	17.2	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	19/10/18	60	0.0	3.4	17.2	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	19/10/18	90	0.0	3.4	17.1	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	19/10/18	120	0.0	3.5	17.1	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	19/10/18	180	0.0	3.5	17.1	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	02/11/18	0	0.0	0.0	21.3	0.1	0.0	1011	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	02/11/18	10	0.0	2.6	20.7	0.1	0.0	1011	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	02/11/18	20	0.0	3.0	20.1	0.1	0.0	1011	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	02/11/18	30	0.0	3.0	19.9	0.1	0.0	1011	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	02/11/18	60	0.0	3.0	19.9	0.1	0.0	1011	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	02/11/18	90	0.0	3.0	19.9	0.1	0.0	1011	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	02/11/18	120	0.0	3.0	19.9	0.1	0.0	1011	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	02/11/18	180	0.0	3.0	19.9	0.1	0.0	1011	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	20/11/18	0	0.0	0.0	21.3	0.1	0.0	994	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	20/11/18	10	0.0	1.8	20.6	0.1	0.0	994	Dry	0.000	0.002	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	20/11/18	20	0.0	2.8	19.2	0.1	0.0	994	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	20/11/18	30	0.0	2.9	19.1	0.1	0.0	994	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	20/11/18	60	0.0	3.0	19.0	0.1	0.0	994	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	20/11/18	90	0.0	3.0	19.0	0.1	0.0	994	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	20/11/18	120	0.0	3.0	19.0	0.1	0.0	994	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	20/11/18	180	0.0	3.0	19.0	0.1	0.0	994	Dry	0.000	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/11/18	0	0.0	0.0	20.9	0.0	0.0	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/11/18	10	0.0	0.1	20.9	0.0	0.0	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/11/18	20	0.0	0.1	20.9	0.0	0.0	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/11/18	30	0.0	0.1	20.9	0.0	0.0	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/11/18	60	0.0	0.1	20.8	0.0	0.0	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/11/18	90	0.0	0.4	20.7	0.0	0.0	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/11/18	120	0.0	0.7	20.3	0.0	0.0	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	30/11/18	180	0.0	1.9	19.1	0.0	0.0	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	14/12/18	10	0.0	0.1	19.7	0.0	0.0	1003	dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	14/12/18	20	0.0	0.2	19.7	0.0	0.0	1003	dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	14/12/18	30	0.0	0.2	19.6	0.0	0.0	1003	dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	14/12/18	60	0.0	0.2	19.5	0.0	0.0	1003	dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	14/12/18	90	0.0	0.4	19.1	0.0	0.0	1003	dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	14/12/18	120	0.0	0.7	19.0	0.0	0.0	1003	dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	14/12/18	180	0.0	0.8	18.8	0.0	0.0	1003	dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/12/18	0	0.0	0.0	20.9	0.0	0.0	984	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/12/18	10	0.0	0.0	20.0	0.0	0.0	984	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/12/18	20	0.0	0.2	19.7	0.0	0.0	984	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/12/18	30	0.0	0.5	19.3	0.0	0.0	984	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/12/18	60	0.0	0.5	19.1	0.0	0.0	984	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/12/18	90	0.0	0.9	18.3	0.0	0.0	984	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN

Ref: GE17326 Client: AMV Haulage

		Time	СН	CO		- I - · · ·	voc	Dunnanuna		GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NF	IBC	
Location	Date		- 4	(00)	O ₂ (%)	Flow		Pressure	GWL (m bgl)	CII	CO,	BS8485	& C665	Flow	CH₄	CO ₂	CH	I ₄	CC	02
		(sec)	(%)	(%)		(I/nr)	(ppm)	(mb)		Cn ₄	CO2	CH₄	CO ₂	FIOW	Cn ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS01	21/12/18	120	0.0	1.1	18.0	0.0	0.0	984	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS01	21/12/18	180	0.0	1.2	17.9	0.0	0.0	984	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Max values		0.0	3.5	21.3	0.1	0.1	1011.0	0.0	0.000	0.004	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Min Vaules		0.0	0.0	17.1	0.0	0.0	984.0	0.0	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
Bh	I Flow LoD che	ck	0.0	3.5	21.3	0.1	-	-	-	0.000	0.004	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN

										GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	BC	
Location	Date	Time	CH₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				CI			:0,
20000000	2410	(sec)	(%)	(%)	-2 (1-)	(I/hr)	(ppm)	(mb)	(28.)	CH₄	CO ₂	CH ₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS02	30/07/18	0	0.0	0.0	20.9	0.0	1.0	999	2.33	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS02	30/07/18	10	1.9	7.4	0.9	0.0	1.0	999	2.33	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS02	30/07/18	20	1.9	7.6	0.2	0.0	1.0	999	2.33	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS02	30/07/18	30	1.9	7.7	0.0	0.0	1.0	999	2.33	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS02	30/07/18	60	1.9	7.8	0.0	0.0	1.0	999	2.33	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS02	30/07/18	90	1.9	7.9	0.0	0.0	1.0	999	2.33	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS02	30/07/18	120	2.0	8.0	0.0	0.0	1.0	999	2.33	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS02	30/07/18	180	2.1	8.1	0.0	0.0	1.0	999	2.33	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS02	10/08/18	0	0.0	0.0	20.9	0.1	0.0	1008	2.32	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS02	10/08/18	10	9.0	6.2	2.0	0.1	0.0	1008	2.32	0.009	0.006	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	10/08/18	20	9.1	7.7	0.6	0.1	0.0	1008	2.32	0.009	0.008	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	10/08/18	30	9.0	8.0	0.3	0.1	0.0	1008	2.32	0.009	0.008	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	10/08/18	60	9.1	8.2	0.1	0.1	0.0	1008	2.32	0.009	0.008	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	10/08/18	90	9.1	8.2	0.1	0.1	0.0	1008	2.32	0.009	0.008	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	10/08/18	120	9.1	8.4	0.0	0.1	0.0	1008	2.32	0.009	0.008	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	10/08/18	180	9.2	8.4	0.0	0.1	0.0	1008	2.32	0.009	0.008	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	24/08/18	0	0.0	0.0	20.9	0.0	0.0	1002	2.36	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS02	24/08/18	10	12.9	7.1	1.0	0.0	0.0	1002	2.36	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	24/08/18	20	14.2	7.2	0.8	0.0	0.0	1002	2.36	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	24/08/18	30	14.5	7.3	0.5	0.0	0.0	1002	2.36	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	24/08/18	60	14.7	7.4	0.4	0.0	0.0	1002	2.36	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	24/08/18	90	14.8	7.4	0.2	0.0	0.0	1002	2.36	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	24/08/18	120	14.9	7.5	0.2	0.0	0.0	1002	2.36	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	24/08/18	180	15.1	7.5	0.1	0.0	0.0	1002	2.36	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	07/09/18	0	0.0	0.0	20.9	0.0		1002	2.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS02	07/09/18	10	7.0	0.5	15.0	0.0		1002	2.40	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	07/09/18	20	14.0	4.3	7.0	0.0		1002	2.40	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	07/09/18	30	17.8	7.0	0.1	0.0		1002	2.40	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	07/09/18	60	18.3	7.1	0.0	0.0		1002	2.40	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	07/09/18	90	18.4	7.2	0.0	0.0		1002	2.40	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	07/09/18	120	18.4	7.3	0.0	0.0		1002	2.40	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	07/09/18	180	18.4	7.3	0.2	0.0		1002	2.40	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	21/09/18	0	0.0	0.0	20.9	0.0	0.0	997	2.45	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS02	21/09/18	10	4.2	4.8	15.6	0.0	0.0	997	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS02	21/09/18	20	8.3	5.7	5.3	0.0	0.0	997	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	21/09/18	30	8.9	5.8	4.7	0.0	0.0	997	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	21/09/18	60	9.3	6.0	4.3	0.0	0.0	997	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	21/09/18	90	9.4	6.1	4.1	0.0	0.0	997	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	21/09/18	120	9.4	6.2	3.9	0.0	0.0	997	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	21/09/18	180	9.4	6.2	3.9	0.0	0.0	997	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS02	05/10/18	0	0.0	0.0	20.9	0.0	0.1	1000	2.65	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS02	05/10/18	10	21.9	6.3	0.4	0.0	0.1	1000	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	05/10/18	20	23.3	6.6	0.2	0.0	0.1	1000	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	05/10/18	30	23.9	6.6	0.1	0.0	0.1	1000	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	05/10/18	60	24.0	6.6	0.0	0.0	0.1	1000	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	05/10/18	90	24.0	6.6	0.0	0.0	0.1	1000	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	05/10/18	120	24.1	6.7	0.0	0.0	0.1	1000	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
	10, 10, 10			0.,	0.0	0.0	V.2	2000		0.000	0.000				37111 0027110	302. 002	<u> </u>		J.,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Ref: GE17326 Client: AMV Haulage

										GSV	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	IBC	
Location	Date	Time	CH ₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				С	H ₄	-	0,
		(sec)	(%)	(%)		(I/hr)	(ppm)	(mb)	(CH₄	CO ₂	CH₄	CO,	Flow	CH₄	CO ₂	GSV	Conc.	GSV	Conc.
WS02	05/10/18	180	24.1	6.7	0.0	0.0	0.1	1000	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	19/10/18	0	0.0	0.0	20.9	0.0	0.0	1013	2.56	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS02	19/10/18	10	21.0	6.5	0.6	0.0	0.0	1013	2.56	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	19/10/18	20	22.8	6.5	0.2	0.0	0.0	1013	2.56	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	19/10/18	30	23.3	6.5	0.1	0.0	0.0	1013	2.56	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	19/10/18	60	23.5	6.6	0.0	0.0	0.0	1013	2.56	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	19/10/18	90	23.6	6.6	0.0	0.0	0.0	1013	2.56	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	19/10/18	120	23.6	6.6	0.0	0.0	0.0	1013	2.56	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	19/10/18	180	23.8	6.7	0.0	0.0	0.0	1013	2.56	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	02/11/18	0	0.0	0.0	21.7	0.1	0.0	1016	2.66	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS02	02/11/18	10	7.9	3.3	19.3	0.1	0.0	1016	2.66	0.008	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	02/11/18	20	22.3	6.3	1.6	0.1	0.0	1016	2.66	0.022	0.006	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	02/11/18	30	22.4	6.3	1.0	0.1	0.0	1016	2.66	0.022	0.006	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	02/11/18	60	22.4	6.3	0.8	0.1	0.0	1016	2.66	0.022	0.006	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	02/11/18	90	22.4	6.3	0.6	0.1	0.0	1016	2.66	0.022	0.006	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	02/11/18	120	22.5	6.4	0.5	0.1	0.0	1016	2.66	0.023	0.006	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	02/11/18	180	22.6	6.4	0.4	0.1	0.0	1016	2.66	0.023	0.006	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	20/11/18	0	0.0	0.0	22.0	0.0	0.0	999	1.50	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS02	20/11/18	10	1.1	3.1	18.5	0.0	0.0	999	1.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS02	20/11/18	20	25.5	5.2	7.3	0.0	0.0	999	1.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	20/11/18	30	24.9	5.6	1.8	0.0	0.0	999	1.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	20/11/18	60	25.1	5.6	0.9	0.0	0.0	999	1.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	20/11/18	90	25.2	5.7	0.6	0.0	0.0	999	1.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	20/11/18	120	25.2	5.7	0.6	0.0	0.0	999	1.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	20/11/18	180	25.2	5.7	0.6	0.0	0.0	999	1.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS02	30/11/18	0	0.0	0.0	20.9	3.8	0.0	1001	0.81	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS02	30/11/18	10	19.6	9.6	12.5	3.8	0.0	1001	0.81	0.745	0.365	CS3	CS2	NO	NO	NO	AMBER 2	AMBER 2	GREEN	AMBER 1
WS02	30/11/18	20	26.8	5.4	7.8	3.8	0.0	1001	0.81	1.018	0.205	CS3	CS2	NO	NO	NO	AMBER 2	RED	GREEN	AMBER 1
WS02	30/11/18	30	33.8	4.7	0.7	3.8	0.0	1001	0.81	1.284	0.179	CS3	CS2	NO	NO	NO	AMBER 2	RED	GREEN	GREEN
WS02	30/11/18	60	33.9	4.8	0.4	3.8	0.0	1001	0.81	1.288	0.182	CS3	CS2	NO	NO	NO	AMBER 2	RED	GREEN	GREEN
WS02	30/11/18	90	34.1	4.8	0.4	3.8	0.0	1001	0.81	1.296	0.182	CS3	CS2	NO	NO	NO	AMBER 2	RED	GREEN	GREEN
WS02	30/11/18	120	34.1	4.8	0.4	3.8	0.0	1001	0.81	1.296	0.182	CS3	CS2	NO	NO	NO	AMBER 2	RED	GREEN	GREEN
WS02	30/11/18	180	34.1	4.8	0.4	3.8	0.0	1001	0.81	1.296	0.182	CS3	CS2	NO	NO	NO	AMBER 2	RED	GREEN	GREEN
WS02	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1001	1.95	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS02	14/12/18	10	14.0	3.8	3.0	0.0	0.0	1009	1.95	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	14/12/18	20	16.8	4.2	0.5	0.0	0.0	1009	1.95	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	14/12/18	30	18.2	4.2	0.1	0.0	0.0	1009	1.95	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	14/12/18	60	18.5	4.3	0.0	0.0	0.0	1009	1.95	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	14/12/18	90	18.7	4.3	0.0	0.0	0.0	1009	1.95	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	14/12/18	120	18.8	4.4	0.0	0.0	0.0	1009	1.95	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	14/12/18	180	18.8	4.4	0.0	0.0	0.0	1009	1.95	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS02	21/12/18	0	0.0	0.0	20.9	38.0	0.0	989	0.70	0.000	0.000	CS1	CS1	NO	NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS02	21/12/18	10	13.0	3.2	1.0	38.0	0.0	989	0.70	4.940	1.216	CS4	CS3	NO	NO	NO	RED	AMBER 2	AMBER 1	GREEN
WS02	21/12/18	20	16.0	3.5	0.3	38.0	0.0	989	0.70	6.080	1.330	CS4	CS3	NO	NO	NO	RED	AMBER 2	AMBER 1	GREEN
WS02	21/12/18	30	17.0	3.6	0.3	38.0	0.0	989	0.70	6.460	1.368	CS4	CS3	NO	NO	NO	RED	AMBER 2	AMBER 1	GREEN
WS02	21/12/18	60	17.0	3.7	0.0	38.0	0.0	989	0.70	6.536	1.406	CS4	CS3	NO	NO	NO	RED	AMBER 2	AMBER 1	GREEN
WS02	21/12/18	90	17.3	3.7	0.0	38.0	0.0	989	0.70	6.574	1.406	CS4	CS3	NO	NO	NO	RED	AMBER 2	AMBER 1	GREEN
VV302	21/12/10	30	17.3	3.7	0.0	30.0	0.0	303	0.70	0.574	1.400	C34	633	NO	INO	INO	NLD .	AWIDEN Z	AWIDEN I	GILLIN

Ref: GE17326 Client: AMV Haulage

		Time	СН	CO,		Flow	voc	Dunnanuna		GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	IBC	
Location	Date		- 4	(24)	O ₂ (%)	(I /I)	()	Pressure	GWL (m bgl)	CH,	CO ₂	BS8485	& C665	Flow	CH₄	CO,	C	H ₄	CC	02
		(sec)	(%)	(%)		(I/nr)	(ppm)	(mb)		CH ₄	CO ₂	CH ₄	CO ₂	Flow	Cn ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS02	21/12/18	120	17.3	3.7	0.0	38.0	0.0	989	0.70	6.574	1.406	CS4	CS3	NO	NO	NO	RED	AMBER 2	AMBER 1	GREEN
WS02	21/12/18	180	17.4	3.7	0.0	38.0	0.0	989	0.70	6.612	1.406	CS4	CS3	NO	NO	NO	RED	AMBER 2	AMBER 1	GREEN
	Max values		34.1	9.6	22.0	38.0	1.0	1016.0	2.7	12.958	3.648	CS4	CS4	NO	NO	NO	RED	RED	RED	AMBER 1
	Min Vaules		0.0	0.0	0.0	0.0	0.0	984.0	0.7	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
BH	I Flow LoD che	ck	34.1	9.6	22.0	0.1	-	-	-	0.034	0.010	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1

										GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	IBC	
Location	Date	Time	CH ₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				CI		-	:0,
200011011	2410	(sec)	(%)	(%)	-2 (, -,	(I/hr)	(ppm)	(mb)	(28.)	CH₄	CO ₂	CH ₄	CO,	Flow	CH₄	CO ₂	GSV	Conc.	GSV	Conc.
WS03	30/07/18	0	0.0	0.0	20.9	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/07/18	10	0.2	2.2	17.8	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/07/18	20	0.0	2.3	17.4	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/07/18	30	0.0	2.6	17.1	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/07/18	60	0.0	2.8	16.9	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/07/18	90	0.0	3.1	16.8	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/07/18	120	0.0	3.6	16.2	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/07/18	180	0.0	3.7	16.1	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	10/08/18	0	0.0	0.0	20.9	0.0	0.0	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	10/08/18	10	0.0	5.0	15.3	0.0	0.0	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	AMBER 1
WS03	10/08/18	20	0.0	5.2	15.0	0.0	0.0	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	10/08/18	30	0.0	5.3	15.0	0.0	0.0	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	10/08/18	60	0.0	5.3	14.9	0.0	0.0	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	10/08/18	90	0.0	5.4	14.9	0.0	0.0	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	10/08/18	120	0.0	5.4	14.9	0.0	0.0	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	10/08/18	180	0.0	5.4	14.9	0.0	0.0	1003	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	24/08/18	0	0.0	0.0	20.9	0.0	0.3	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	24/08/18	10	0.0	5.7	14.8	0.0	0.3	999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	24/08/18	20	0.0	5.8	14.4	0.0	0.3	999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	24/08/18	30	0.0	5.9	14.4	0.0	0.3	999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	24/08/18	60	0.0	6.0	14.3	0.0	0.3	999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	24/08/18	90	0.0	6.0	14.3	0.0	0.3	999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	24/08/18	120	0.0	6.1	14.2	0.0	0.3	999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	24/08/18	180	0.0	6.1	14.2	0.0	0.3	999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	07/09/18	0	0.0	0.0	20.9	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	07/09/18	10	0.0	1.0	19.1	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	07/09/18	20	0.0	4.8	19.0	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	07/09/18	30	0.0	5.1	15.0	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	07/09/18	60	0.0	5.3	14.9	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	07/09/18	90	0.0	5.4	14.8	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	07/09/18	120	0.0	5.5	14.8	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	07/09/18	180	0.0	5.8	14.8	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	21/09/18	0	0.0	0.0	20.9	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS03	21/09/18	10	0.0	3.2	16.3	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	21/09/18	20	0.0	5.1	15.5	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	21/09/18	30	0.0	5.3	15.4	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	21/09/18	60	0.0	5.5	15.3	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	21/09/18	90	0.0	5.6	15.2	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	21/09/18	120	0.0	5.6	15.2	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	21/09/18	180	0.0	5.6	15.2	0.0	0.0	995	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS03	05/10/18	0	0.0	0.0	20.9	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	05/10/18	10	0.0	4.1	16.6	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	05/10/18	20	0.0	4.5	15.8	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	05/10/18	30	0.0	4.5	15.7	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	05/10/18	60	0.0	4.7	15.6	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	05/10/18	90	0.0	4.7	15.6	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	05/10/18	120	0.0	4.8	15.5	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	05/10/18	120	0.0	4.8	15.5	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GR

Ref: GE17326 Client: AMV Haulage

										CSV	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	o Chark		NIL	IBC .	
	D-4-	Time	CH₄	CO2	0 (9/)	Flow	voc	Pressure	C)4/1 (h -1)	G3V/	Qiigs		& C665		C31 Lillilling Valu	ie Check	_	H ₄	-	0,
Location	Date	(sec)	(%)	(%)	O ₂ (%)	(l/hr)	(ppm)	(mb)	GWL (m bgl)	CH₄	CO2	CH ₄	CO ₂	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS03	05/10/18	180	0.0	4.9	15.5	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	19/10/18	0	0.0	0.0	20.9	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	19/10/18	10	0.0	2.0	18.3	0.0	0.0	1009		0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03		20	0.0	2.0	18.3	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1 CS1	NO	NO NO	NO				GREEN
WS03	19/10/18	30		2.0	18.3		0.0		Dry		0.000	CS1	CS1	NO		NO	GREEN	GREEN	GREEN	
	19/10/18		0.0	2.0	18.3	0.0	0.0	1009	Dry	0.000			CS1 CS1	NO	NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	19/10/18	60 90	0.0	2.0	18.3	0.0	0.0	1009 1009	Dry	0.000	0.000	CS1 CS1	CS1 CS1	NO NO	_	NO NO	GREEN	GREEN	GREEN	GREEN
WS03	19/10/18								Dry						NO NO		GREEN	GREEN	GREEN	GREEN
WS03	19/10/18	120	0.0	2.1	18.2	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1 CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS03	19/10/18	180	0.0	2.1	18.2	0.0	0.0	1009	Dry	0.000	0.000	CS1		NO	NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS03	02/11/18	0	0.0	0.0	21.0	0.0	0.0	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	02/11/18	10	0.0	0.6	20.7	0.0	0.0	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	02/11/18	20	0.0	2.6	19.2	0.0	0.0	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	02/11/18	30	0.0	2.7	18.9	0.0	0.0	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	02/11/18	60	0.0	2.8	18.8	0.0	0.0	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	02/11/18	90	0.0	2.9	18.7	0.0	0.0	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	02/11/18	120	0.0	3.3	18.5	0.0	0.0	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	02/11/18	180	0.0	3.4	18.4	0.0	0.0	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	20/11/18	0	0.0	0.0	21.5	0.2	0.0	995	2.41	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	20/11/18	10	0.0	0.6	21.3	0.2	0.0	995	2.41	0.000	0.001	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	20/11/18	20	0.0	2.9	19.9	0.2	0.0	995	2.41	0.000	0.006	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	20/11/18	30	0.0	2.9	19.4	0.2	0.0	995	2.41	0.000	0.006	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	20/11/18	60	0.0	2.9	19.2	0.2	0.0	995	2.41	0.000	0.006	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	20/11/18	90	0.0	2.9	19.1	0.2	0.0	995	2.41	0.000	0.006	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	20/11/18	120	0.0	2.9	19.1	0.2	0.0	995	2.41	0.000	0.006	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	20/11/18	180	0.0	2.9	19.1	0.2	0.0	995	2.41	0.000	0.006	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/11/18	0	0.0	0.0	21.4	0.0	0.0	997	1.14	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/11/18	10	0.0	0.6	21.3	0.0	0.0	997	1.14	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/11/18	20	0.0	1.5	20.3	0.0	0.0	997	1.14	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/11/18	30	0.0	1.5	20.0	0.0	0.0	997	1.14	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/11/18	60	0.0	1.6	20.0	0.0	0.0	997	1.14	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/11/18	90	0.0	1.7	19.9	0.0	0.0	997	1.14	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/11/18	120	0.0	1.7	19.9	0.0	0.0	997	1.14	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	30/11/18	180	0.0	1.7	19.9	0.0	0.0	997	1.14	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	14/12/18	0	0.0	2.1	17.9	0.0	0.0	1005	1.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	14/12/18	10	0.0	2.2	17.8	0.0	0.0	1005	1.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	14/12/18	20	0.0	2.2	17.7	0.0	0.0	1005	1.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	14/12/18	30	0.0	2.2	17.7	0.0	0.0	1005	1.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	14/12/18	60	0.0	2.2	17.7	0.0	0.0	1005	1.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	14/12/18	90	0.0	2.2	17.7	0.0	0.0	1005	1.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	14/12/18	120	0.0	2.2	17.7	0.0	0.0	1005	1.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	14/12/18	180	0.0	2.2	17.7	0.0	0.0	1005	1.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	21/12/18	0	0.0	0.0	20.9	0.0	0.0	984	0.84	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	21/12/18	10	0.0	0.8	18.6	0.0	0.0	984	0.84	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	21/12/18	20	0.0	0.9	18.5	0.0	0.0	984	0.84	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	21/12/18	30	0.0	0.9	18.5	0.0	0.0	984	0.84	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	21/12/18	60	0.0	0.9	18.5	0.0	0.0	984	0.84	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
													CS1			NO				GREEN
WS03	21/12/18	90	0.0	0.9	18.5	0.0	0.0	984	0.84	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	C

Ref: GE17326 Client: AMV Haulage

		Date Time	CH	co,		Flow	voc	Dunnanuna		GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	IBC	
Location	Date		(0/)	(2/)	O ₂ (%)	(I/hr)		Pressure	GWL (m bgl)	CH	CO ₂	BS8485	& C665	Flow	СН	CO,	CI	1 ₄	C	02
		(sec)	(%)	(%)		(I/nr)	(ppm)	(mb)		CH ₄	CO ₂	CH ₄	CO ₂	FIOW	Cn ₄	CO2	GSV	Conc.	GSV	Conc.
WS03	21/12/18	120	0.0	0.9	18.5	0.0	0.0	984	0.84	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS03	21/12/18	180	0.0	0.9	18.5	0.0	0.0	984	0.84	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Max values		0.2	6.1	21.5	0.2	0.3	1013.0	2.4	0.000	0.012	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
	Min Vaules		0.0	0.0	14.2	0.0	0.0	984.0	0.8	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
BH	Flow LoD che	ck	0.2	6.1	21.5	0.1	-	-	-	0.000	0.006	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1

										GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	BC	
Location	Date	Time	CH₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				C		-	0,
		(sec)	(%)	(%)	2 (* ')	(I/hr)	(ppm)	(mb)	(CH₄	CO ₂	CH₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS04	30/07/18	0	0.0	0.0	20.9	0.0	0.4	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	30/07/18	10	14.0	3.2	0.6	0.0	0.4	996	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/07/18	20	14.6	3.2	0.3	0.0	0.4	996	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/07/18	30	14.9	3.3	0.2	0.0	0.4	996	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/07/18	60	14.9	3.3	0.2	0.0	0.4	996	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/07/18	90	15.0	3.3	0.1	0.0	0.4	996	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/07/18	120	15.0	3.3	0.0	0.0	0.4	996	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/07/18	180	15.1	3.3	0.0	0.0	0.4	996	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	10/08/18	0	0.0	0.0	20.9	0.0	0.8	1004	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	10/08/18	10	11.8	3.8	0.4	0.0	0.8	1004	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	10/08/18	20	13.1	3.9	0.2	0.0	0.8	1004	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	10/08/18	30	13.4	3.9	0.0	0.0	0.8	1004	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	10/08/18	60	13.5	3.9	0.0	0.0	0.8	1004	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	10/08/18	90	13.6	4.0	0.0	0.0	0.8	1004	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	10/08/18	120	13.6	4.0	0.0	0.0	0.8	1004	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	10/08/18	180	13.6	4.0	0.0	0.0	0.8	1004	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	24/08/18	0	0.0	0.0	20.9	0.0	0.9	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	24/08/18	10	10.0	2.0	1.0	0.0	0.9	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	24/08/18	20	11.9	3.5	0.8	0.0	0.9	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	24/08/18	30	12.1	3.6	0.7	0.0	0.9	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	24/08/18	60	12.2	3.6	0.6	0.0	0.9	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	24/08/18	90	12.3	3.6	0.5	0.0	0.9	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	24/08/18	120	12.5	3.6	0.3	0.0	0.9	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	24/08/18	180	12.6	3.6	0.2	0.0	0.9	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	07/09/18	0	0.0	0.0	20.9	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	07/09/18	10	7.0	2.4	9.8	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	07/09/18	20	6.3	3.3	9.2	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	07/09/18	30	10.8	3.6	0.4	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	07/09/18	60	12.3	3.7	0.2	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	07/09/18	90	12.4	3.7	0.2	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	07/09/18	120	12.4	3.7	0.0	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	07/09/18	180	12.4	3.7	0.0	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/09/18	0	0.0	0.0	20.9	0.0	1.0	994	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	21/09/18	10	4.3	1.3	6.8	0.0	1.0	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS04	21/09/18	20	7.8	1.8	5.5	0.0	1.0	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/09/18	30	8.3	1.8	5.2	0.0	1.0	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/09/18	60	8.4	1.9	5.0	0.0	1.0	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/09/18	90	8.4	1.9	5.0	0.0	1.0	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/09/18	120	8.4	1.9	5.0	0.0	1.0	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/09/18	180	8.4	1.9	5.0	0.0	1.0	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	05/10/18	0	0.0	0.0	20.9	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	05/10/18	10	10.0	3.5	0.5	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	05/10/18	20	11.7	3.6	0.3	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	05/10/18	30	12.1	3.6	0.2	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	05/10/18	60	12.2	3.6	0.1	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	05/10/18	90	12.3	3.7	0.0	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	05/10/18	120	12.3	3.7	0.0	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN

										GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	BC	
Location	Date	Time	CH₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)			BS8485					С	H ₄	-	0,
Location	Dute	(sec)	(%)	(%)	02 (70)	(l/hr)	(ppm)	(mb)	CVVE (III DEI)	CH₄	CO ₂	CH₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS04	05/10/18	180	12.4	3.7	0.0	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	19/10/18	0	0.0	0.0	20.9	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	19/10/18	10	8.0	5.0	0.2	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	AMBER 1
WS04	19/10/18	20	13.4	3.6	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	19/10/18	30	13.5	3.6	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	19/10/18	60	13.6	3.6	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	19/10/18	90	13.6	3.6	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	19/10/18	120	13.6	3.6	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	19/10/18	180	13.6	3.6	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	02/11/18	0	0.0	0.0	20.7	0.0	1.2	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	02/11/18	10	12.4	4.7	5.7	0.0	1.2	1013	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	02/11/18	20	12.0	4.7	1.2	0.0	1.2	1013	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	02/11/18	30	12.0	4.7	0.5	0.0	1.2	1013	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	02/11/18	60	12.1	4.7	0.2	0.0	1.2	1013	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	02/11/18	90	12.1	4.7	0.1	0.0	1.2	1013	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	02/11/18	120	12.2	4.7	0.1	0.0	1.2	1013	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	02/11/18	180	12.2	4.7	0.1	0.0	1.2	1013	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/11/18	0	0.0	0.0	21.4	0.2	0.3	998	4.88	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	30/11/18	10	2.9	1.6	17.4	0.2	0.3	998	4.88	0.006	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS04	30/11/18	20	18.0	1.8	5.5	0.2	0.3	998	4.88	0.036	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/11/18	30	17.9	1.8	1.4	0.2	0.3	998	4.88	0.036	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/11/18	60	18.0	1.8	0.3	0.2	0.3	998	4.88	0.036	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/11/18	90	18.0	1.8	0.2	0.2	0.3	998	4.88	0.036	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/11/18	120	18.1	1.9	0.1	0.2	0.3	998	4.88	0.036	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	30/11/18	180	18.1	1.9	0.1	0.2	0.3	998	4.88	0.036	0.004	CS1	CS1	NO	CH4>CS1 limit	NO NO	GREEN	AMBER 2	GREEN	GREEN
WS04	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1007	dry	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS04	14/12/18	10	17.3	1.9	0.2	0.0	0.0	1007	dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO NO	GREEN	AMBER 2	GREEN	GREEN
WS04	14/12/18	20 30	18.0	1.9	0.1	0.0	0.0	1007 1007	dry	0.000	0.000	CS1	CS1 CS1	NO NO	CH4>CS1 limit CH4>CS1 limit	NO NO	GREEN	AMBER 2	GREEN GREEN	GREEN
WS04	14/12/18		18.1			0.0			dry	0.000		CS1					GREEN	AMBER 2		GREEN
WS04 WS04	14/12/18	60 90	18.3	1.9	0.1	0.0	0.0	1007 1007	dry	0.000	0.000	CS1 CS1	CS1 CS1	NO NO	CH4>CS1 limit CH4>CS1 limit	NO NO	GREEN	AMBER 2	GREEN	GREEN
WS04 WS04	14/12/18 14/12/18	120	18.3 18.3	1.9	0.0	0.0	0.0	1007	dry dry	0.000	0.000	CS1 CS1	CS1 CS1	NO NO	CH4>CS1 limit	NO NO	GREEN GREEN	AMBER 2 AMBER 2	GREEN GREEN	GREEN GREEN
WS04 WS04	14/12/18	180	18.3	1.9	0.0	0.0	0.0	1007	dry	0.000	0.000	CS1 CS1	CS1 CS1	NO NO	CH4>CS1 limit CH4>CS1 limit	NO NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/12/18	0	0.0	0.0	20.9	0.0	0.0	985	4.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS04	21/12/18	10	14.0	1.2	3.8	0.0	0.2	985	4.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/12/18	20	17.0	1.4	0.8	0.0	0.2	985	4.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/12/18	30	18.2	1.5	0.8	0.0	0.2	985	4.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/12/18	60	18.7	1.5	0.0	0.0	0.2	985	4.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/12/18	90	18.9	1.5	0.0	0.0	0.2	985	4.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/12/18	120	18.9	1.5	0.0	0.0	0.2	985	4.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS04	21/12/18	180	18.9	1.5	0.0	0.0	0.2	985	4.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
	Max values	100	18.9	5.0	21.4	0.2	1.2	1013.0	4.9	0.038	0.010	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	AMBER 1
	Min Vaules		0.0	0.0	0.0	0.0	0.0	984.0	4.9	0.000	0.000	CS1	CS1	NO	NO NO	NO	GREEN	GREEN	GREEN	GREEN
BH	Flow LoD ched	:k	18.9	5.0	21.4	0.1	-	-	-	0.019	0.005	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	AMBER 1
	J JD 0.100									0.020	2.303	-7-								4

										GSV	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	le Check		NH	BC	
Location	Date	Time	CH ₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)		T T	BS8485					C	H ₄	-	0,
Location	Dute	(sec)	(%)	(%)	2 (70)	(l/hr)	(ppm)	(mb)	CVVE (III DEI)	CH ₄	CO ₂	CH ₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS05	30/07/18	0	0.0	0.0	20.9	0.0	0.2	996	4.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	30/07/18	10	8.0	4.7	2.9	0.0	0.2	996	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	30/07/18	20	8.7	4.7	2.5	0.0	0.2	996	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	30/07/18	30	8.9	4.8	2.5	0.0	0.2	996	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	30/07/18	60	8.8	4.9	2.4	0.0	0.2	996	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	30/07/18	90	8.9	4.9	2.4	0.0	0.2	996	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	30/07/18	120	8.8	4.9	2.4	0.0	0.2	996	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	30/07/18	180	8.8	4.9	2.4	0.0	0.2	996	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	10/08/18	0	0.0	0.0	20.9	0.0	0.0	1006	4.86	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	10/08/18	10	8.8	5.1	4.1	0.0	0.0	1006	4.86	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS05	10/08/18	20	9.6	5.3	3.5	0.0	0.0	1006	4.86	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS05	10/08/18	30	9.8	5.3	3.3	0.0	0.0	1006	4.86	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS05	10/08/18	60	9.9	5.3	3.3	0.0	0.0	1006	4.86	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS05	10/08/18	90	10.0	5.4	3.0	0.0	0.0	1006	4.86	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS05	10/08/18	120	10.0	5.5	2.9	0.0	0.0	1006	4.86	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS05	10/08/18	180	10.0	5.5	2.9	0.0	0.0	1006	4.86	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS05	24/08/18	0	0.0	0.0	20.9	0.0	0.2	1000	4.85	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	24/08/18	10	0.0	0.7	18.4	0.0	0.2	1000	4.85	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	24/08/18	20	0.0	0.6	18.7	0.0	0.2	1000	4.85	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	24/08/18	30	0.0	0.6	18.8	0.0	0.2	1000	4.85	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	24/08/18	60	0.0	0.6	18.8	0.0	0.2	1000	4.85	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	24/08/18	90	0.0	0.6	18.8	0.0	0.2	1000	4.85	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	24/08/18	120	0.0	0.5	18.8	0.0	0.2	1000	4.85	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	24/08/18	180	0.0	0.5	18.8	0.0	0.2	1000	4.85	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	07/09/18	0	0.0	0.0	20.9	0.0		1000	4.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	07/09/18	10	2.0	1.5	10.0	0.0		1000	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS05	07/09/18	20	11.0	4.0	0.5	0.0		1000	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	07/09/18	30	13.3	4.2	0.4	0.0		1000	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	07/09/18	60	13.7	4.3	0.2	0.0		1000	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	07/09/18	90	13.8	4.3	0.2	0.0		1000	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	07/09/18	120	13.8	4.3	0.2	0.0		1000	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	07/09/18	180	13.8	4.3	0.2	0.0		1000	4.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	21/09/18	0	0.0	0.0	20.9	0.0	0.0	995	4.85	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	21/09/18	10	6.4	4.5	0.9	0.0	0.0	995	4.85	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	21/09/18	20	17.5	4.6	0.7	0.0	0.0	995	4.85	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	21/09/18	30	17.6	4.7	0.1	0.0	0.0	995	4.85	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	21/09/18	60	17.8	4.7	0.0	0.0	0.0	995	4.85	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	21/09/18	90	17.8	4.8	0.0	0.0	0.0	995	4.85	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	21/09/18	120	17.8	4.8	0.0	0.0	0.0	995	4.85	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	21/09/18	180	17.8	4.8	0.0	0.0	0.0	995	4.85	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	05/10/18	0	0.0	0.0	20.9	0.0	0.0	999	4.76	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	05/10/18	10	14.0	5.0	1.5	0.0	0.0	999	4.76	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	AMBER 1
WS05	05/10/18	20	15.4	4.6	0.6	0.0	0.0	999	4.76	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	05/10/18	30	15.8	4.7	0.5	0.0	0.0	999	4.76	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	05/10/18	60	15.9	4.7	0.4	0.0	0.0	999	4.76	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	05/10/18	90	15.9	4.7	0.4	0.0	0.0	999	4.76	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	05/10/18	120	16.0	4.7	0.3	0.0	0.0	999	4.76	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
	,, -0																			

Ref: GE17326 Client: AMV Haulage

						_,		_		GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	IBC	
Location	Date	Time	CH ₄	CO ₂	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)	CII	1 00	BS8485	& C665	El			CI	H ₄	CC	02
		(sec)	(%)	(%)		(I/hr)	(ppm)	(mb)	. 0,	CH₄	CO ₂	CH ₄	CO ₂	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS05	05/10/18	180	16.0	4.7	0.3	0.0	0.0	999	4.76	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS05	19/10/18	0	0.0	0.0	20.9	0.0	0.0	1010	3.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	19/10/18	10	0.0	0.7	18.3	0.0	0.0	1010	3.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	19/10/18	20	0.0	0.7	18.4	0.0	0.0	1010	3.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	19/10/18	30	0.0	0.7	18.6	0.0	0.0	1010	3.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	19/10/18	60	0.0	0.6	18.6	0.0	0.0	1010	3.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	19/10/18	90	0.0	0.6	18.7	0.0	0.0	1010	3.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	19/10/18	120	0.0	0.6	18.8	0.0	0.0	1010	3.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	19/10/18	180	0.0	0.6	18.8	0.0	0.0	1010	3.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	02/11/18	0	0.0	0.0	20.7	0.0	0.0	1014	4.70	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	02/11/18	10	0.0	0.3	20.3	0.0	0.0	1014	4.70	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	02/11/18	20	0.0	0.6	19.9	0.0	0.0	1014	4.70	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	02/11/18	30	0.0	0.6	19.9	0.0	0.0	1014	4.70	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	02/11/18	60	0.0	0.5	20.0	0.0	0.0	1014	4.70	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	02/11/18	90	0.0	0.5	20.0	0.0	0.0	1014	4.70	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	02/11/18	120	0.0	0.4	20.1	0.0	0.0	1014	4.70	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	02/11/18	180	0.0	0.4	20.1	0.0	0.0	1014	4.70	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	20/11/18	0	0.0	0.0	21.7	0.2	0.0	996	2.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	20/11/18	10	0.0	3.2	17.9	0.2	0.0	996	2.20	0.000	0.006	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	20/11/18	20	0.0	4.4	14.1	0.2	0.0	996	2.20	0.000	0.009	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	20/11/18	30	0.0	4.7	12.1	0.2	0.0	996	2.20	0.000	0.009	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	20/11/18	60	0.0	4.9	10.3	0.2	0.0	996	2.20	0.000	0.010	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	20/11/18	90	0.0	4.9	10.2	0.2	0.0	996	2.20	0.000	0.010	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	20/11/18	120	0.0	4.9	10.2	0.2	0.0	996	2.20	0.000	0.010	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	20/11/18	180	0.0	4.9	10.2	0.2	0.0	996	2.20	0.000	0.010	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	30/11/18	0	0.0	0.0	21.3	0.0	0.0	998	0.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	30/11/18	10	0.2	1.5	18.5	0.0	0.0	998	0.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	30/11/18	20	0.1	1.9	14.0	0.0	0.0	998	0.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	30/11/18	30	0.1	1.6	14.2	0.0	0.0	998	0.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	30/11/18	60	0.0	1.1	16.3	0.0	0.0	998	0.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	30/11/18	90	0.0	0.9	17.7	0.0	0.0	998	0.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	30/11/18	120	0.0	0.7	18.6	0.0	0.0	998	0.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	30/11/18	180	0.0	0.5	19.5	0.0	0.0	998	0.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1007	1.83	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	14/12/18	10	0.0	2.4	14.2	0.0	0.0	1007	1.83	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	14/12/18	20	0.0	3.1	12.9	0.0	0.0	1007	1.83	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	14/12/18	30	0.0	3.1	12.9	0.0	0.0	1007	1.83	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	14/12/18	60	0.0	2.9	13.3	0.0	0.0	1007	1.83	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	14/12/18	90	0.0	2.9	13.4	0.0	0.0	1007	1.83	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	14/12/18	120	0.0	2.9	13.4	0.0	0.0	1007	1.83	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	14/12/18	180	0.0	2.8	13.4	0.0	0.0	1007	1.83	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	21/12/18	0	0.0	0.0	20.9	0.0	0.3	985	0.56	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	21/12/18	10	0.0	0.5	17.5	0.0	0.3	985	0.56	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	21/12/18	20	0.0	0.4	18.2	0.0	0.3	985	0.56	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	21/12/18	30	0.0	0.2	18.7	0.0	0.3	985	0.56	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	21/12/18	60	0.0	0.1	19.3	0.0	0.3	985	0.56	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	21/12/18	90	0.0	0.0	19.5	0.0	0.3	985	0.56	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN

Ref: GE17326 Client: AMV Haulage

		Time	CH	co,		Flow	voc	Dunnanuna		GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	IBC	
Location	Date	Time	(0/)	(00)	O ₂ (%)	(I/hr)		Pressure	GWL (m bgl)	CH	CO ₂	BS8485	& C665	Flow	CH₄	CO	CI	H ₄	C	02
		(sec)	(%)	(%)		(I/nr)	(ppm)	(mb)		Cn ₄	CO2	CH ₄	CO ₂	Flow	Cn ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS05	21/12/18	120	0.0	0.0	19.6	0.0	0.3	985	0.56	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS05	21/12/18	180	0.0	0.0	19.8	0.0	0.3	985	0.56	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Max values		17.8	5.5	21.7	0.2	0.3	1014.0	4.9	0.036	0.011	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
	Min Vaules		0.0	0.0	0.0	0.0	0.0	984.0	0.6	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
ВН	I Flow LoD che	ck	17.8	5.5	21.7	0.1	-	-	-	0.018	0.006	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1

WS06 30/ WS06 30/ WS06 30/ WS06 30/ WS06 30/ WS06 30/	0/07/18 0/07/18 0/07/18 0/07/18	Time (sec)	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	Flow	voc	Pressure			'Qhgs	Characteris			CS1 Limiting Valu			NH		
WS06 30/ WS06 30/ WS06 30/ WS06 30/ WS06 30/ WS06 30/	0/07/18 0/07/18 0/07/18	0		(%)	-2 (, -,				GWL (m bgl)			BS8485	& C665				C	H,	С	:0,
WS06 30/ WS06 30/ WS06 30/ WS06 30/ WS06 30/	0/07/18 0/07/18		0.0			(I/hr)	(ppm)	(mb)	0112 (28.7	CH ₄	CO ₂	CH ₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS06 30/ WS06 30/ WS06 30/ WS06 30/ WS06 30/	0/07/18 0/07/18		0.0	0.0	20.9	0.0	0.0	955	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06 30/ WS06 30/ WS06 30/ WS06 30/	0/07/18		4.5	8.4	7.0	0.0	0.0	955	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06 30/ WS06 30/ WS06 30/		20	5.2	9.2	2.6	0.0	0.0	955	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06 30/ WS06 30/		30	5.3	9.3	2.5	0.0	0.0	955	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06 30/	0/07/18	60	5.1	9.4	2.5	0.0	0.0	955	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
,	0/07/18	90	5.0	9.5	2.4	0.0	0.0	955	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
	0/07/18	120	4.7	9.8	2.4	0.0	0.0	955	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06 30/	0/07/18	180	2.9	9.9	2.5	0.0	0.0	955	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
	0/08/18	0	0.0	0.0	20.9	0.0	0.7	1005	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	0/08/18	10	0.5	8.8	8.5	0.0	0.7	1005	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
	0/08/18	20	0.3	9.2	7.4	0.0	0.7	1005	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
	0/08/18	30	0.3	9.4	7.4	0.0	0.7	1005	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
	0/08/18	60	0.3	9.4	7.2	0.0	0.7	1005	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
	0/08/18	90	0.3	9.5	7.2	0.0	0.7	1005	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
	0/08/18	120	0.2	9.9	7.0	0.0	0.7	1005	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
	0/08/18	180	0.2	9.9	7.0	0.0	0.7	1005	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
	4/08/18	0	0.0	0.0	20.9	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	4/08/18	10	11.0	8.0	1.0	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
,	4/08/18	20	12.5	9.9	0.8	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
	4/08/18	30	12.8	9.9	0.6	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
,	4/08/18	60	12.9	10.0	0.5	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
	4/08/18	90	12.9	10.1	0.5	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
	4/08/18	120	13.0	10.2	0.4	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
	4/08/18	180	13.0	10.2	0.4	0.0	0.0	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
	7/09/18	0	0.0	0.0	20.9	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	7/09/18	10	3.6	0.7	17.2	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
	7/09/18	20	5.2	0.7	5.0	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
	7/09/18	30	6.2	10.2	1.6	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
	7/09/18	60	6.2	10.9	0.8	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
	7/09/18	90	6.5	11.2	0.7	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
WS06 07/	7/09/18	120	6.5	11.4	0.5	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
	7/09/18	180	6.5	11.4	0.5	0.0		999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
	1/09/18	0	0.0	0.0	20.9	0.0	0.5	994	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	1/09/18	10	0.6	2.7	13.4	0.0	0.5	994	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	1/09/18	20	1.5	7.9	7.3	0.0	0.5	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
	1/09/18	30	1.7	8.1	7.0	0.0	0.5	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
	1/09/18	60	1.6	8.3	6.8	0.0	0.5	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
	1/09/18	90	1.6	8.5	6.7	0.0	0.5	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
	1/09/18	120	1.4	8.6	6.1	0.0	0.5	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06 21/	1/09/18	180	1.2	9.0	5.8	0.0	0.5	994	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06 05/	5/10/18	0	0.0	0.0	20.9	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06 05/	5/10/18	10	14.6	8.9	0.5	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
	5/10/18	20	16.5	9.0	0.4	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
	5/10/18	30	16.8	9.1	0.3	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06 05/	5/10/18	60	16.8	9.1	0.2	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06 05/	5/10/18	90	17.0	9.2	0.1	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06 05/	5/10/18	120	17.0	9.2	0.1	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1

Ref: GE17326 Client: AMV Haulage

										CCV	/Qhgs	Chavastavia	tic Situation		CS1 Limiting Valu	a Chaal		NII.	IBC	
		Time	CH₄	CO2	0 (0/)	Flow	voc	Pressure		GSV/	Qngs		& C665		CS1 Limiting valu	е спеск		.H₄		0,
Location	Date	(sec)	(%)	(%)	O ₂ (%)	(I/hr)	(ppm)	(mb)	GWL (m bgl)	CH₄	CO2	CH ₄		Flow	CH ₄	CO ₂			GSV	- 2
MCOC	05/40/40	100	17.0	0.2	0.1	0.0	0.0	1000	Direct	0.000	0.000	-	CO ₂	NO	CITAL CCA limit	CO2+ CC4 limit	GSV	Conc.		Conc.
WS06	05/10/18	180	17.0	9.3	0.1	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06	19/10/18	0	0.0	0.0	20.9	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS06	19/10/18	10	8.1	9.3	1.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06	19/10/18	20	9.7	10.1	0.6	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
WS06	19/10/18	30	10.1	10.3	0.5	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
WS06	19/10/18	60	10.2	10.4	0.4	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
WS06	19/10/18	90	10.3	10.5	0.4	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
WS06	19/10/18	120	10.2	10.6	0.3	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
WS06	19/10/18	180	10.3	10.7	0.3	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 2
WS06	02/11/18	0	0.0	0.0	21.0	0.0	0.2	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	02/11/18	10	0.0	1.7	19.8	0.0	0.2	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	02/11/18	20	0.0	9.4	11.5	0.0	0.2	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS06	02/11/18	30	0.0	9.5	10.2	0.0	0.2	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS06	02/11/18	60	0.0	9.6	9.7	0.0	0.2	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS06	02/11/18	90	0.0	9.9	9.3	0.0	0.2	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS06	02/11/18	120	0.0	10.2	8.8	0.0	0.2	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 2
WS06	02/11/18	180	0.0	10.3	8.6	0.0	0.2	1013	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 2
WS06	20/11/18	0	0.0	0.0	21.7	0.2	0.1	996	2.76	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	20/11/18	10	16.0	7.3	14.8	0.2	0.1	996	2.76	0.032	0.015	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06	20/11/18	20	20.0	8.0	5.0	0.2	0.1	996	2.76	0.040	0.016	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS06	20/11/18	30	20.0	8.0	2.2	0.2	0.1	996	2.76	0.040	0.016	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS06	20/11/18	60	20.0	8.0	0.8	0.2	0.1	996	2.76	0.040	0.016	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS06	20/11/18	90	20.0	8.0	0.7	0.2	0.1	996	2.76	0.040	0.016	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS06	20/11/18	120	20.0	8.0	0.7	0.2	0.1	996	2.76	0.040	0.016	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS06	20/11/18	180	20.0	8.0	0.7	0.2	0.1	996	2.76	0.040	0.016	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	AMBER 1
WS06	30/11/18	0	0.0	0.0	21.4	0.0	0.0	998	2.75	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS06	30/11/18	10	0.7	0.3	18.8	0.0	0.0	998	2.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	30/11/18	20	10.9	6.2	12.1	0.0	0.0	998	2.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06	30/11/18	30	10.3	6.2	9.9	0.0	0.0	998	2.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06	30/11/18	60	10.8	6.2	9.9	0.0	0.0	998	2.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06	30/11/18	90	10.8	6.2	9.4	0.0	0.0	998	2.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06	30/11/18	120	10.8	6.2	9.4	0.0	0.0	998	2.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	AMBER 1
WS06	30/11/18	180	10.8	62.0	9.4	0.0	0.0	998	2.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 2	GREEN	RED
WS06	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1005	Dry	0.000	0.000	CS1	CS1	NO	NO	NO CO2+ CS4 live it	GREEN	GREEN	GREEN	GREEN
WS06	14/12/18	10	3.1	7.2	4.5	0.0	0.0	1005	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06	14/12/18	20	3.8	7.7	3.0	0.0	0.0	1005	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06	14/12/18	30	4.0	7.8	2.6	0.0	0.0	1005	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06	14/12/18	60	4.1	7.8	2.5	0.0	0.0	1005	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06	14/12/18	90	4.2	8.0	2.4	0.0	0.0	1005	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06	14/12/18	120	4.2	8.0	2.4	0.0	0.0	1005	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06	14/12/18	180	4.2	8.1	2.3	0.0	0.0	1005	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	AMBER 1	GREEN	AMBER 1
WS06	21/12/18	0	0.0	0.0	20.9	0.0	0.4	986	2.60	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	21/12/18	10	0.0	2.7	12.5	0.0	0.4	986	2.60	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	21/12/18	20	0.0	2.7	12.5	0.0	0.4	986	2.60	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	21/12/18	30	0.0	2.7	12.5	0.0	0.4	986	2.60	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	21/12/18	60	0.0	3.2	11.5	0.0	0.4	986	2.60	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	21/12/18	90	0.0	3.2	11.0	0.0	0.4	986	2.60	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN

		Time	5	CO		Fla	VOC	Dunanium		GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	IBC	
Location	Date	(ana)	(0/)	(0/)	O ₂ (%)	(I/ba)	/nnm)	Pressure	GWL (m bgl)	CI	CO ₂	BS8485	& C665	Flow	CH ₄	CO,	C	H ₄	C	02
		(sec)	(%)	(%)		(I/Nr)	(ppm)	(mb)		CH ₄	CO ₂	CH ₄	CO ₂	riow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS06	21/12/18	120	0.0	3.8	10.5	0.0	0.4	986	2.60	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS06	21/12/18	180	0.0	4.0	10.3	0.0	0.4	986	2.60	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Max values		20.0	62.0	21.7	0.2	0.7	1013.0	2.8	0.040	0.124	CS1	CS2	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	RED
	Min Vaules		0.0	0.0	0.1	0.0	0.0	984.0	2.6	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
ВН	Flow LoD ched	k	20.0	62.0	21.7	0.1	-	-	-	0.020	0.062	CS1	CS1	NO	CH4>CS1 limit	CO2>CS1 limit	GREEN	RED	GREEN	RED

Ref: GE17326 Client: AMV Haulage

										CCV	/Qhgs	Chavastavia	tic Situation		CS1 Limiting Valu	a Chaal		NII	IBC	
	<u> </u>	Time	CH ₄	CO2	0 (0()	Flow	voc	Pressure		GSV/	Qngs		& C665		CS1 Limiting Valu	е спеск		H ₄		:0,
Location	Date	(sec)	(%)	(%)	O ₂ (%)	(I/hr)	(ppm)	(mb)	GWL (m bgl)	CH ₄	CO2			Flow	CH₄	CO ₂			_	- 2
14/607	20/07/40		0.0	0.0	20.0	0.0	0.6	005		0.000	0.000	CH ₄	CO ₂	110	110	110	GSV	Conc.	GSV	Conc.
WS07	30/07/18	0	0.0	0.0	20.9	0.0	0.6	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS07	30/07/18	10	0.0	3.9	17.7	0.0	0.6	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS07	30/07/18	20	0.0	4.2	17.6	0.0	0.6	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/07/18	30	0.0	4.3	17.5	0.0	0.6	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/07/18	60	0.0	4.4	17.4	0.0	0.6	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/07/18	90	0.0	4.5	17.1	0.0	0.6	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/07/18	120	0.0	4.9	17.1	0.0	0.6	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/07/18	180	0.0	4.9	17.1	0.0	0.6	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	10/08/18	0	0.0	0.0	20.9	0.0	0.3	1004	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	10/08/18	10	0.0	0.0	20.1	0.0	0.3	1004	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	10/08/18	20	0.0	0.0	20.1	0.0	0.3	1004	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	10/08/18	30	0.0	0.0	20.0	0.0	0.3	1004	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	10/08/18	60	0.0	0.0	20.0	0.0	0.3	1004	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	10/08/18	90	0.0	0.0	20.0	0.0	0.3	1004	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	10/08/18	120	0.0	0.0	20.0	0.0	0.3	1004	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	10/08/18	180	0.0	0.0	20.0	0.0	0.3	1004	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	24/08/18	0	0.0	0.0	20.9	0.0	0.2	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	24/08/18	10	0.0	5.3	16.2	0.0	0.2	998	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS07	24/08/18	20	0.0	5.6	16.0	0.0	0.2	998	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS07	24/08/18	30	0.0	5.6	15.9	0.0	0.2	998	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS07	24/08/18	60	0.0	5.7	15.7	0.0	0.2	998	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS07	24/08/18	90	0.0	5.8	15.7	0.0	0.2	998	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS07	24/08/18	120	0.0	5.9	15.6	0.0	0.2	998	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS07	24/08/18	180	0.0	6.0	15.5	0.0	0.2	998	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS07	07/09/18	0	0.0	0.0	20.9	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	07/09/18	10	0.0	0.5	19.9	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	07/09/18	20	0.0	0.7	19.7	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	07/09/18	30	0.0	0.7	19.6	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	07/09/18	60	0.0	0.7	19.5	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	07/09/18	90	0.0	0.8	19.4	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	07/09/18	120	0.0	0.9	19.3	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	07/09/18	180	0.0	1.4	18.9	0.0		1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/09/18	0	0.0	0.0	20.9	0.0	0.0	993	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/09/18	10	0.0	2.2	18.6	0.0	0.0	993	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/09/18	20	0.0	4.5	16.8	0.0	0.0	993	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/09/18	30	0.0	4.7	16.5	0.0	0.0	993	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/09/18	60	0.0	4.9	16.4	0.0	0.0	993	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/09/18	90	0.0	5.0	16.4	0.0	0.0	993	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	AMBER 1
WS07	21/09/18	120	0.0	5.2	16.4	0.0	0.0	993	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS07	21/09/18	180	0.0	5.2	16.3	0.0	0.0	993	Dry	0.000	0.000	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
WS07	05/10/18	0	0.0	0.0	20.9	0.0	0.0	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS07		10	0.0	0.0	20.9	0.0	0.1	998		0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07 WS07	05/10/18 05/10/18	20	0.0	0.3	20.4	0.0	0.1	998	Dry Dry	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS07 WS07	05/10/18	30	0.0	0.1	20.4	0.0	0.1	998		0.000	0.000	CS1 CS1	CS1 CS1	NO NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
		60	0.0	0.1	20.5	0.0	0.1	998	Dry	0.000			CS1	NO NO	NO NO					
WS07	05/10/18								Dry		0.000	CS1		NO NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS07	05/10/18	90	0.0	0.0	20.5	0.0	0.1	998	Dry	0.000	0.000	CS1	CS1			NO NO	GREEN	GREEN	GREEN	GREEN
WS07	05/10/18	120	0.0	0.0	20.5	0.0	0.1	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN

Ref: GE17326 Client: AMV Haulage

										GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	IBC	
Location	Date	Time	CH ₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				CI		-	0,
2000000	2410	(sec)	(%)	(%)	-2 (, -,	(I/hr)	(ppm)	(mb)	(28.)	CH₄	CO ₂	CH ₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS07	05/10/18	180	0.0	0.0	20.5	0.0	0.1	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	19/10/18	0	0.0	0.0	20.9	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	19/10/18	10	0.0	0.1	20.2	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	19/10/18	20	0.0	0.1	20.2	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	19/10/18	30	0.0	0.2	20.1	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	19/10/18	60	0.0	0.2	20.1	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	19/10/18	90	0.0	0.2	20.1	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	19/10/18	120	0.0	0.2	20.1	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	19/10/18	180	0.0	0.2	20.1	0.0	0.0	1009	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	02/11/18	0	0.0	0.0	21.8	0.1	0.0	1012	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	02/11/18	10	0.0	0.0	21.9	0.1	0.0	1012	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	02/11/18	20	0.0	0.0	21.9	0.1	0.0	1012	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	02/11/18	30	0.0	0.0	21.9	0.1	0.0	1012	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	02/11/18	60	0.0	0.0	21.9	0.1	0.0	1012	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	02/11/18	90	0.0	0.0	21.9	0.1	0.0	1012	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	02/11/18	120	0.0	0.0	21.9	0.1	0.0	1012	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	02/11/18	180	0.0	0.0	21.9	0.1	0.0	1012	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	20/11/18	0	0.0	0.0	21.1	0.1	0.1	995	1.95	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	20/11/18	10	0.0	4.1	18.9	0.1	0.1	995	1.95	0.000	0.004	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	20/11/18	20	0.0	4.0	17.9	0.1	0.1	995	1.95	0.000	0.004	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	20/11/18	30	0.0	3.9	17.4	0.1	0.1	995	1.95	0.000	0.004	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	20/11/18	60	0.0	3.9	17.4	0.1	0.1	995	1.95	0.000	0.004	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	20/11/18	90	0.0	3.9	17.4	0.1	0.1	995	1.95	0.000	0.004	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	20/11/18	120	0.0	3.9	17.4	0.1	0.1	995	1.95	0.000	0.004	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	20/11/18	180	0.0	3.9	17.4	0.1	0.1	995	1.95	0.000	0.004	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/11/18	0	0.0	0.0	20.9	0.0	0.0	997	1.96	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/11/18	10	0.0	1.3	20.1	0.0	0.0	997	1.96	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/11/18	20	0.0	3.2	16.4	0.0	0.0	997	1.96	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/11/18	30	0.0	2.7	16.8	0.0	0.0	997	1.96	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/11/18	60	0.0	2.4	17.4	0.0	0.0	997	1.96	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/11/18	90	0.0	1.9	18.2	0.0	0.0	997	1.96	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/11/18	120	0.0	1.6	18.6	0.0	0.0	997	1.96	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	30/11/18	180	0.0	1.6	18.7	0.0	0.0	997	1.96	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	14/12/18	10	0.0	4.5	11.5	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	14/12/18	20	0.0	4.5	11.4	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	14/12/18	30	0.0	4.5	11.3	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	14/12/18	60	0.0	4.5	11.3	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	14/12/18	90	0.0	4.6	11.3	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	14/12/18	120	0.0	4.6	11.3	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	14/12/18	180	0.0	4.6		0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/12/18	0	0.0	0.0	20.9	0.0	0.0	984	1.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/12/18	10	0.0	0.5	19.2	0.0	0.0	984	1.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/12/18	20	0.0	0.4	19.3	0.0	0.0	984	1.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/12/18	30	0.0	0.3	19.6	0.0	0.0	984	1.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/12/18	60	0.0	0.3	19.6	0.0	0.0	984	1.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/12/18	90	0.0	0.2	19.6	0.0	0.0	984	1.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
**307	21/12/10	30	0.0	0.2	15.0	0.0	0.0	334	1.50	0.000	0.000	631	631	.,,	140	140	ONELIN	ONELIV	CITELIA	JILL

Ref: GE17326 Client: AMV Haulage

		Time	СН	CO ₂		Flow	voc	Dunnanuna		GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	IBC	
Location	Date		- 4	(24)	O ₂ (%)	(I/hr)	()	Pressure	GWL (m bgl)	CH	CO ₂	BS8485	& C665	Flow	CH	CO,	CI	1 ₄	C	02
		(sec)	(%)	(%)		(I/nr)	(ppm)	(mb)		Cn ₄	CO ₂	CH ₄	CO ₂	Flow	CH₄	CO2	GSV	Conc.	GSV	Conc.
WS07	21/12/18	120	0.0	0.2	19.6	0.0	0.0	984	1.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS07	21/12/18	180	0.0	0.2	19.7	0.0	0.0	984	1.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Max values		0.0	6.0	21.9	0.1	0.6	1012.0	2.0	0.000	0.006	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1
	Min Vaules		0.0	0.0	11.3	0.0	0.0	984.0	1.9	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
BH	I Flow LoD che	ck	0.0	6.0	21.9	0.1	-	-	-	0.000	0.006	CS1	CS1	NO	NO	CO2>CS1 limit	GREEN	GREEN	GREEN	AMBER 1

Ref: GE17326 Client: AMV Haulage

										CSV	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	o Chask		NIL	ВС	
		Time	CH₄	CO2	0 (0()	Flow	voc	Pressure		GSV/	Qngs		& C665		CS1 Limiting valu	е спеск		.H₄	-	0,
Location	Date	(sec)	(%)	(%)	O ₂ (%)	(I/hr)	(ppm)	(mb)	GWL (m bgl)	CH₄	CO2			Flow	CH ₄	CO ₂				- 4
11/500	20/07/40				20.0	0.0	0.0	007	4.05	0.000	0.000	CH ₄	CO ₂	110	110		GSV	Conc.	GSV	Conc.
WS08	30/07/18	0	0.0	0.0	20.9	0.0	0.0	997	4.05	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS08	30/07/18	10	10.7	0.9	0.6	0.0	0.0	997	4.05	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/07/18	20	12.2	0.9	0.2	0.0	0.0	997	4.05	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/07/18	30	12.4	0.9	0.2	0.0	0.0	997	4.05	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/07/18	60	12.5	0.9	0.0	0.0	0.0	997	4.05	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/07/18	90	12.5	0.9	0.0	0.0	0.0	997	4.05	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/07/18	120	12.7	0.9	0.0	0.0	0.0	997	4.05	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/07/18	180	12.7	0.9	0.0	0.0	0.0	997	4.05	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	10/08/18	0	0.0	0.0	20.9	0.0	0.1	1006	4.27	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	10/08/18	10	12.0	0.7	0.3	0.0	0.1	1006	4.27	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	10/08/18	20	14.5	0.7	0.1	0.0	0.1	1006	4.27	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	10/08/18	30	15.3	0.7	0.0	0.0	0.1	1006	4.27	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	10/08/18	60	15.5	0.7	0.0	0.0	0.1	1006	4.27	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	10/08/18	90	15.5	0.7	0.0	0.0	0.1	1006	4.27	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	10/08/18	120	15.5	0.7	0.0	0.0	0.1	1006	4.27	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	10/08/18	180	15.5	0.7	0.0	0.0	0.1	1006	4.27	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	24/08/18	0	0.0	0.0	20.9	0.0	0.0	1001	4.26	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	24/08/18	10	12.0	0.5	1.0	0.0	0.0	1001	4.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	24/08/18	20	14.0	0.5	0.3	0.0	0.0	1001	4.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	24/08/18	30	14.5	0.5	0.1	0.0	0.0	1001	4.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	24/08/18	60	14.7	0.5	0.0	0.0	0.0	1001	4.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	24/08/18	90	14.8	0.5	0.0	0.0	0.0	1001	4.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	24/08/18	120	14.8	0.5	0.0	0.0	0.0	1001	4.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	24/08/18	180	14.8	0.5	0.0	0.0	0.0	1001	4.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	07/09/18	0	0.0	0.0	20.9	0.0		1001	4.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	07/09/18	10	7.3	0.6	15.6	0.0		1001	4.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	07/09/18	20	13.5	1.0	0.6	0.0		1001	4.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	07/09/18	30	14.1	0.5	0.6	0.0		1001	4.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	07/09/18	60	14.4	0.7	0.2	0.0		1001	4.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	07/09/18	90	14.4	0.6	0.1	0.0		1001	4.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	07/09/18	120	14.5	0.6	0.1	0.0		1001	4.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	07/09/18	180	14.5	0.6	0.1	0.0		1001	4.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	21/09/18	0	0.0	0.0	20.9	0.0	0.0	995	4.70	0.000	0.000	CS1	CS1	NO	NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	21/09/18	10	2.4	0.0	8.9	0.0	0.0	995	4.70	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS08	21/09/18	20	13.5	0.2	0.7	0.0	0.0	995	4.70	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	21/09/18	30	16.3	0.3	0.7	0.0	0.0	995	4.70	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	21/09/18	60	17.1	0.4	0.0	0.0	0.0	995	4.70	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	21/09/18	90	17.1	0.4	0.0	0.0	0.0	995	4.70	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	21/09/18	120	17.2	0.4	0.0	0.0	0.0	995	4.70	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO NO	GREEN	AMBER 2	GREEN	GREEN
WS08 WS08	21/09/18	180	17.2	0.4	0.0	0.0	0.0	995	4.70	0.000	0.000	CS1 CS1	CS1	NO NO	CH4>CS1 limit CH4>CS1 limit	NO NO	GREEN	AMBER 2	GREEN	GREEN
WS08 WS08		0	0.0	0.4	20.9	0.0	0.0	1000	4.70	0.000	0.000	CS1	CS1	NO NO	NO NO	NO NO		GREEN		GREEN
	05/10/18	10												NO NO			GREEN		GREEN	
WS08	05/10/18		30.6	2.0	0.8	0.0	0.0	1000	4.46	0.000	0.000	CS1	CS1		CH4>CS1 limit	NO NO	GREEN	RED	GREEN	GREEN
WS08	05/10/18	20	32.9	2.0	0.7	0.0	0.0	1000	4.46	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO NO	GREEN	RED	GREEN	GREEN
WS08	05/10/18	30	33.9	2.0	0.5	0.0	0.0	1000	4.46	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO NO	GREEN	RED	GREEN	GREEN
WS08	05/10/18	60	34.0	2.0	0.5	0.0	0.0	1000	4.46	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO NO	GREEN	RED	GREEN	GREEN
WS08	05/10/18	90	34.1	2.0	0.5	0.0	0.0	1000	4.46	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	05/10/18	120	34.1	2.1	0.5	0.0	0.0	1000	4.46	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN

										GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	IBC	
Location	Date	Time	CH ₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				С	H₄	-	0,
		(sec)	(%)	(%)		(I/hr)	(ppm)	(mb)	(CH₄	CO ₂	CH₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS08	05/10/18	180	34.3	2.1	0.5	0.0	0.0	1000	4.46	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	19/10/18	0	0.0	0.0	20.9	0.0	0.0	1011	2.45	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	19/10/18	10	24.7	0.8	0.1	0.0	0.0	1011	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	19/10/18	20	26.9	0.8	0.0	0.0	0.0	1011	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	19/10/18	30	27.1	0.8	0.0	0.0	0.0	1011	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	19/10/18	60	27.1	0.8	0.0	0.0	0.0	1011	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	19/10/18	90	27.2	0.8	0.0	0.0	0.0	1011	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	19/10/18	120	27.2	0.8	0.0	0.0	0.0	1011	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	19/10/18	180	27.2	0.8	0.0	0.0	0.0	1011	2.45	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	02/11/18	0	0.0	0.0	20.9	0.0	0.0	1015	3.50	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	02/11/18	10	0.8	0.5	15.5	0.0	0.0	1015	3.50	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	02/11/18	20	18.4	0.9	2.1	0.0	0.0	1015	3.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	02/11/18	30	18.4	0.9	0.7	0.0	0.0	1015	3.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	02/11/18	60	18.5	0.9	0.3	0.0	0.0	1015	3.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	02/11/18	90	18.5	0.9	0.2	0.0	0.0	1015	3.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	02/11/18	120	18.5	0.9	0.1	0.0	0.0	1015	3.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	02/11/18	180	18.5	0.9	0.1	0.0	0.0	1015	3.50	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	20/11/18	0	0.0	0.0	21.6	0.3	0.1	997	1.80	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	20/11/18	10	13.4	0.7	10.3	0.3	0.1	997	1.80	0.040	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	20/11/18	20	18.9	0.9	3.0	0.3	0.1	997	1.80	0.057	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	20/11/18	30	18.9	0.9	1.4	0.3	0.1	997	1.80	0.057	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	20/11/18	60	18.9	0.9	1.1	0.3	0.1	997	1.80	0.057	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	20/11/18	90	18.9	0.9	0.9	0.3	0.1	997	1.80	0.057	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	20/11/18	120	18.9	0.9	0.9	0.3	0.1	997	1.80	0.057	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	20/11/18	180	18.9	0.9	0.9	0.3	0.1	997	1.80	0.057	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/11/18	0	0.0	0.0	21.4	0.0	0.0	999	1.24	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	30/11/18	10	6.8	0.5	19.2	0.0	0.0	999	1.24	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/11/18	20	18.7	0.9	1.6	0.0	0.0	999	1.24	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/11/18	30	18.7	0.9	1.4	0.0	0.0	999	1.24	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/11/18	60	19.0	0.9	1.2	0.0	0.0	999	1.24	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/11/18	90	19.2	1.0	1.0	0.0	0.0	999	1.24	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/11/18	120	19.2	1.0	0.8	0.0	0.0	999	1.24	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	30/11/18	180	19.2	1.0	0.8	0.0	0.0	999	1.24	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1008	1.80	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	14/12/18	10	12.8	0.7	4.5	0.0	0.0	1008	1.80	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	14/12/18	20	19.7	0.6	0.1	0.0	0.0	1008	1.80	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	14/12/18	30	21.0	0.8	0.9	0.0	0.0	1008	1.80	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	14/12/18	60	21.1	0.8	0.9	0.0	0.0	1008	1.80	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	14/12/18	90	21.2	0.8	0.9	0.0	0.0	1008	1.80	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	14/12/18	120	21.2	0.8	0.0	0.0	0.0	1008	1.80	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	14/12/18	180	21.3	0.8	0.0	0.0	0.0	1008	1.80	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	21/12/18	0	0.0	0.0	20.9	0.0	0.1	986	1.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS08	21/12/18	10	17.0	2.0	1.0	0.0	0.1	986	1.20	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	21/12/18	20	19.0	0.5	1.0	0.0	0.1	986	1.20	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	21/12/18	30	19.8	0.8	0.3	0.0	0.1	986	1.20	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	21/12/18	60	19.9	0.8	0.3	0.0	0.1	986	1.20	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS08	21/12/18	90	20.0	0.8	0.2	0.0	0.1	986	1.20	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN

		Time	CH	CO		Flow	voc	Dunnanuna		GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	IBC	
Location	Date	Time	(0/)	CO ₂	O ₂ (%)	(I/hr)		Pressure	GWL (m bgl)	СН	CO ₂	BS8485	& C665	Flow	CH ₄	CO	CI	H ₄	CC	02
		(sec)	(%)	(%)		(I/nr)	(ppm)	(mb)		Cn ₄	CO ₂	CH ₄	CO ₂	Flow	Cn ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS08	21/12/18	120	20.0	0.8	0.1	0.0	0.1	986	1.20	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS08	21/12/18	180	20.0	0.8	0.1	0.0	0.1	986	1.20	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
	Max values		34.3	2.1	21.6	0.3	0.1	1015.0	4.7	0.103	0.006	CS2	CS1	NO	NO	NO	GREEN	RED	GREEN	GREEN
	Min Vaules		0.0	0.0	0.0	0.0	0.0	984.0	1.2	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
BH	Flow LoD che	ck	34.3	2.1	21.6	0.1	-	-	-	0.034	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN

Cocation Date CH4 CO2 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	GSV GREEN	CH4 Conc. GREEN RED	GSV GREEN	O2 CONC. GREEN
WS09 30/07/18 10 50.0 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO NO NO NO NO NO NO N	GSV	GREEN RED	GREEN	GREEN
WS09 30/07/18 10 50.0 0.7 0.1 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 30 52.6 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 30 52.6 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 60 52.7 0.7 0.0 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 90 52.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 120 52.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 120 52.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 130 53.0 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 130 53.0 0.7 0.0 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 10 30.0 0.6 0.7 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 10 30.0 0.6 0.7 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 10 30.0 0.6 0.7 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 60 48.8 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 60 48.8 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 60 48.8 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 60 48.8 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 24/08/18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	GREEN	RED	GREEN	GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN
WS09 30/07/18 20 \$2.0 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 30 \$5.6 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 90 \$5.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 90 \$5.7 0.7 0.0 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 30/07/18 120 \$5.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 30/07/18 180 \$3.0 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 30/07/18 10 30.0 0.6 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 10/08/18 0 0.0 0.0 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 10/08/18 0 0.0 0.0 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N N N N N N N N	GREEN	RED	GREEN	GREEN GREEN GREEN GREEN GREEN GREEN GREEN
WS09 30/07/18 30 \$2.6 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 90 \$2.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 120 \$5.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 120 \$5.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 120 \$5.7 0.7 0.0 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 0.0 0.0 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 10 30.0 0.6 0.7 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 30 48.0 0.7 0.2 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 10 40.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 10 0.0 0.0 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 10 0.0 0.0 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 24/08/18 10 40.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 2	GREEN	RED	GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN	GREEN GREEN GREEN GREEN GREEN GREEN
WS09 30/07/18 60 52.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 120 52.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 120 52.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 180 53.0 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 10 30.0 60 7.7 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 10 30.0 6.6 0.7 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 20 46.0 0.7 0.2 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 20 46.0 0.7 0.2 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 50 48.8 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 90 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 90 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 120 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 120 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 24/08/18 10 40.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 24/08/18 20 42.5 0.7 0.1 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 24/08/18 30 44.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	GREEN	RED RED RED RED GREEN RED RED RED RED RED	GREEN GREEN GREEN GREEN GREEN GREEN GREEN	GREEN GREEN GREEN GREEN GREEN
WS09 30/07/18 90 52.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 120 52.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 30/07/18 180 53.0 0.7 0.0	GREEN	RED RED RED GREEN RED RED RED	GREEN GREEN GREEN GREEN GREEN GREEN	GREEN GREEN GREEN GREEN
WS09 30/07/18 120 52.7 0.7 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NO NO NO NO NO NO NO	GREEN GREE	RED RED GREEN RED RED RED	GREEN GREEN GREEN GREEN GREEN	GREEN GREEN GREEN
WS09 30/07/18 180 53.0 0.7 0.0 0.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 0 0.0 0.0 20.9 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO NO NO NO NO NO NO N	GREEN GREE	RED GREEN RED RED RED	GREEN GREEN GREEN GREEN	GREEN GREEN
WS09 10/08/18 0 0.0 0.0 20.9 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO NO NO NO NO WS09 10/08/18 10 30.0 0.6 0.7 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO NO NO NO NO NO NO N	GREEN GREE	GREEN RED RED RED	GREEN GREEN GREEN	GREEN
WS09 10/08/18 10 30.0 0.6 0.7 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 20 46.0 0.7 0.2 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 60 48.8 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 10/08/18 90 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 10/08/18 90 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N NS09 10/08/18 120 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N N N N N N N N	GREEN GREE	RED RED RED	GREEN GREEN	
WS09 10/08/18 20 46.0 0.7 0.2 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 60 48.8 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N CH4>CS1 limit N	GREEN GREE	RED RED	GREEN	GREEN
WS09 10/08/18 30 48.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N WS09 10/08/18 60 48.8 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N WS09 10/08/18 90 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N N WS09 10/08/18 120 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 10/08/18 120 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 10/08/18 180 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 0 0.0 0.0 20.9 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 10 40.0 0.7 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 20 42.5 0.7 0.1 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 30 44.2 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 60 44.6 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 10 44.8 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 10 44.8 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 10 44.8 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 4	GREEN GREEN GREEN GREEN GREEN GREEN GREEN	RED		GILLIN
WS09 10/08/18 60 48.8 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 10/08/18 90 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 10/08/18 120 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 10/08/18 180 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 10/08/18 180 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 0 0.0 0.0 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 10 40.0 0.7 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 20 42.5 0.7 0.1 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 30 44.2 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 30 44.2 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 44.8 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 10 44.8 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 180 44.8 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 07/09/18 0 0.0 0.0 0.0 0.	GREEN GREEN GREEN GREEN GREEN		CDEEN	GREEN
WS09 10/08/18 90 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 10/08/18 120 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 10/08/18 180 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 0 0.0 0.0 20.9 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO NO N NO NO NO NO NO	GREEN GREEN GREEN	RED	GREEN	GREEN
WS09 10/08/18 120 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 10/08/18 180 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NS09 24/08/18 0 0.0 0.0 20.9 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO NO NO NO NO NO NO N	GREEN GREEN		GREEN	GREEN
WS09 10/08/18 180 49.0 0.7 0.0 0.0 0.0 1005 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N NO NO NO NO NO NO NO) GREEN	RED	GREEN	GREEN
WS09 24/08/18 10 40.0 0.7 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO NO NO NO NO NO NO N		RED	GREEN	GREEN
WS09 24/08/18 10 40.0 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 20 42.5 0.7 0.1 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 30 44.2 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 60 44.6 0.7 0.0 0.0 1000 Dry 0.000 0.00 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 90 44.8 0.7 0.0 0.0 1000 Dry 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 120 44.8 0.7 0.0 0.0 1000 <td></td> <td>RED</td> <td>GREEN</td> <td>GREEN</td>		RED	GREEN	GREEN
WS09 24/08/18 20 42.5 0.7 0.1 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 30 44.2 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 60 44.6 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 90 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.00 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 120 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.00 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 180 44.8 0.7 0.0 0.0 </td <td>GREEN</td> <td>GREEN</td> <td>GREEN</td> <td>GREEN</td>	GREEN	GREEN	GREEN	GREEN
WS09 24/08/18 30 44.2 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 60 44.6 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 90 44.8 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 120 44.8 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 180 44.8 0.7 0.0 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 20.9 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 10 5.0 0.4 10.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 20 34.0 0.7 2.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 30 39.4 0.7 0.2 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 30 39.4 0.7 0.2 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.) GREEN	RED	GREEN	GREEN
WS09 24/08/18 60 44.6 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 90 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 120 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.00 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 180 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.00 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO) GREEN	RED	GREEN	GREEN
WS09 24/08/18 90 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 120 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 180 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.51 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO CH4>CS1 limit <t< td=""><td>) GREEN</td><td>RED</td><td>GREEN</td><td>GREEN</td></t<>) GREEN	RED	GREEN	GREEN
WS09 24/08/18 120 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 24/08/18 180 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 20.9 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO) GREEN	RED	GREEN	GREEN
WS09 24/08/18 180 44.8 0.7 0.0 0.0 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 0 0.0 0.0 20.9 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO NO NO N WS09 07/09/18 10 5.0 0.4 10.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 20 34.0 0.7 2.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 30 39.4 0.7 0.2 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0) GREEN	RED	GREEN	GREEN
WS09 07/09/18 0 0.0 20.9 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO NO N WS09 07/09/18 10 5.0 0.4 10.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 20 34.0 0.7 2.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 30 39.4 0.7 0.2 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N) GREEN	RED	GREEN	GREEN
WS09 07/09/18 10 5.0 0.4 10.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 20 34.0 0.7 2.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 30 39.4 0.7 0.2 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N) GREEN	RED	GREEN	GREEN
WS09 07/09/18 20 34.0 0.7 2.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 30 39.4 0.7 0.2 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N) GREEN	GREEN	GREEN	GREEN
WS09 07/09/18 30 39.4 0.7 0.2 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N WS09 07/09/18 60 41.9 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	AMBER 2	GREEN	GREEN
WS09 07/09/18 60 41.9 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	RED	GREEN	GREEN
	GREEN	RED	GREEN	GREEN
WS09 07/09/18 90 42.1 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	RED	GREEN	GREEN
	GREEN	RED	GREEN	GREEN
WS09 07/09/18 120 42.2 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N) GREEN	RED	GREEN	GREEN
WS09 07/09/18 180 42.2 0.7 0.0 0.0 1001 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N) GREEN	RED	GREEN	GREEN
WS09 21/09/18 0 0.0 0.0 20.9 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO NO N	GREEN	GREEN	GREEN	GREEN
WS09 21/09/18 10 3.9 0.7 11.6 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	AMBER 1	GREEN	GREEN
WS09 21/09/18 20 16.0 0.6 9.8 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	AMBER 2	GREEN	GREEN
WS09 21/09/18 30 17.3 0.6 9.1 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	AMBER 2	GREEN	GREEN
WS09 21/09/18 60 17.6 0.8 9.0 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	AMBER 2	GREEN	GREEN
WS09 21/09/18 90 17.2 0.9 9.3 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	AMBER 2	GREEN	GREEN
WS09 21/09/18 120 16.9 0.9 9.4 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	AMBER 2	GREEN	GREEN
WS09 21/09/18 180 16.9 0.9 9.4 0.0 0.0 996 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	AMBER 2	GREEN	GREEN
WS09 05/10/18 0 0.0 0.0 20.9 0.0 0.3 1000 Dry 0.000 0.51 CS1 NO NO N	GREEN	GREEN	GREEN	GREEN
WS09 05/10/18 10 38.6 0.6 0.2 0.0 0.3 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N) GREEN	RED	GREEN	GREEN
WS09 05/10/18 20 39.8 0.6 0.1 0.0 0.3 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N		RED	GREEN	GREEN
WS09 05/10/18 30 39.9 0.6 0.1 0.0 0.3 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN	RED	GREEN	GREEN
WS09 05/10/18 60 40.0 0.6 0.0 0.0 0.3 1000 Dry 0.000 0.00 CS1 CS1 NO CH4>CS1 limit N		RED	GREEN	GREEN
WS09 05/10/18 90 40.1 0.6 0.0 0.0 0.3 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N) GREEN	RED	GREEN	GREEN
WS09 05/10/18 120 40.1 0.6 0.0 0.0 0.3 1000 Dry 0.000 0.000 CS1 CS1 NO CH4>CS1 limit N	GREEN GREEN	RED	GREEN	

Ref: GE17326 Client: AMV Haulage

										CSV	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	o Chack		NH	DC .	
	D-4-	Time	CH₄	CO2	0 (9/)	Flow	voc	Pressure	C)4/1 (h -1)	G3V/	Qiigs		& C665		C31 Lillilling Valu	e Clieck		H ₄	-	O ₂
Location	Date	(sec)	(%)	(%)	O ₂ (%)	(I/hr)	(ppm)	(mb)	GWL (m bgl)	CH₄	CO2	CH ₄		Flow	CH ₄	CO ₂		_		- 4
14/000	05/40/40	100	40.4	0.6	0.0	0.0	0.2	1000	Direct	0.000	0.000	-	CO ₂	NO	CITA CCA limit	NO	GSV	Conc.	GSV	Conc.
WS09	05/10/18	180	40.1	0.6	0.0	0.0	0.3	1000 1010	Dry	0.000	0.000	CS1	CS1	NO NO	CH4>CS1 limit	NO NO	GREEN		GREEN	GREEN
WS09	19/10/18	10	0.0 35.7	0.0	20.9	0.0	0.0	1010	Dry	0.000	0.000	CS1 CS1	CS1 CS1	NO NO	NO CH4>CS1 limit	NO NO	GREEN	GREEN	GREEN	GREEN GREEN
WS09	19/10/18			0.8		0.0			Dry				CS1 CS1			_	GREEN	RED	GREEN	
WS09	19/10/18	20	38.2	0.8	0.2	0.0	0.0	1010	Dry	0.000	0.000	CS1		NO	CH4>CS1 limit	NO NO	GREEN	RED	GREEN	GREEN
WS09	19/10/18	30	39.2	0.8	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO NO	GREEN	RED	GREEN	GREEN
WS09	19/10/18	60	39.3	0.8	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO NO	GREEN	RED	GREEN	GREEN
WS09	19/10/18	90	39.5	0.8	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED RED	GREEN	GREEN
WS09	19/10/18	120	39.5	0.8	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN		GREEN	GREEN
WS09	19/10/18	180	39.5	0.8	0.0	0.0	0.0	1010	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS09	02/11/18	0	0.0	0.0	20.9	0.2	0.7	1014	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS09	02/11/18	10	2.0	1.0	20.5	0.2	0.7	1014	Dry	0.004	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS09	02/11/18	20	2.6	1.4	19.3	0.2	0.7	1014	Dry	0.005	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS09	02/11/18	30	2.7	1.4	18.3	0.2	0.7	1014	Dry	0.005	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS09	02/11/18	60	2.6	1.4	17.8	0.2	0.7	1014	Dry	0.005	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS09	02/11/18	90	2.3	1.4	17.9	0.2	0.7	1014	Dry	0.005	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS09	02/11/18	120	1.8	1.4	18.2	0.2	0.7	1014	Dry	0.004	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS09	02/11/18	180	0.9	1.3	18.5	0.2	0.7	1014	Dry	0.002	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS09	20/11/18	0	0.0	0.0	21.9	0.3	0.0	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS09	20/11/18	10	11.8	0.7	17.6	0.3	0.0	996	Dry	0.035	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS09	20/11/18	20	32.9	1.4	3.0	0.3	0.0	996	Dry	0.099	0.004	CS2	CS1	NO	NO	NO	GREEN	RED	GREEN	GREEN
WS09	20/11/18	30	33.0	1.4	0.6	0.3	0.0	996	Dry	0.099	0.004	CS2	CS1	NO	NO	NO	GREEN	RED	GREEN	GREEN
WS09	20/11/18	60	33.0	1.4	0.3	0.3	0.0	996	Dry	0.099	0.004	CS2	CS1	NO	NO	NO	GREEN	RED	GREEN	GREEN
WS09	20/11/18	90	33.0	1.4	0.2	0.3	0.0	996	Dry	0.099	0.004	CS2	CS1	NO	NO	NO	GREEN	RED	GREEN	GREEN
WS09	20/11/18	120	33.0	1.4	0.2	0.3	0.0	996	Dry	0.099	0.004	CS2	CS1	NO	NO	NO	GREEN	RED	GREEN	GREEN
WS09	20/11/18	180	33.0	1.4	0.2	0.3	0.0	996	Dry	0.099	0.004	CS2	CS1	NO	NO	NO	GREEN	RED	GREEN	GREEN
WS09	30/11/18	0	0.0	0.0	21.0	0.0	0.2	999	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS09	30/11/18	10	4.2	0.2	20.8	0.0	0.2	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS09	30/11/18	20	10.4	1.0	14.2	0.0	0.2	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS09	30/11/18	30	10.4	1.0	12.8	0.0	0.2	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS09	30/11/18	60	10.0	1.0	12.4	0.0	0.2	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS09	30/11/18	90	9.4	1.1	12.1	0.0	0.2	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS09	30/11/18	120	8.6	1.1	11.7	0.0	0.2	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS09	30/11/18	180	6.7	1.2	1.0	0.0	0.2	999	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS09	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS09	14/12/18	10	31.2	0.7	0.7	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS09	14/12/18	20	33.7	0.7	0.7	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS09	14/12/18	30	34.8	0.7	0.1	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS09	14/12/18	60	35.6	0.7	0.0	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS09	14/12/18	90	35.8	0.7	0.0	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS09	14/12/18	120	35.8	0.7	0.0	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS09	14/12/18	180	36.0	0.8	0.0	0.0	0.0	1008	Dry	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS09	21/12/18	0	0.0	0.0	20.9	13.9	0.0	986	Dry	0.000	0.000	CS1	CS1	NO	NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS09	21/12/18	10	22.9	0.5	5.7	13.9	0.1	986	Dry	3.183	0.000	CS3	CS1	NO	NO	NO	RED	RED	GREEN	GREEN
WS09	21/12/18	20	27.9	0.5	4.8	13.9	0.1	986	Dry	3.878	0.070	CS4	CS1	NO	NO	NO	RED	RED	GREEN	GREEN
WS09	21/12/18	30	29.8	0.5	4.2	13.9	0.1	986	Dry	4.142	0.070	CS4	CS1	NO	NO	NO	RED	RED	GREEN	GREEN
WS09	21/12/18	60	31.0	0.5	3.4	13.9	0.1	986	Dry	4.142	0.070	CS4	CS2	NO	NO	NO	RED	RED	GREEN	GREEN
WS09	21/12/18	90	33.5	0.6	2.3	13.9	0.1	986	Dry	4.657	0.083	CS4	CS2	NO	NO NO	NO		RED	GREEN	GREEN
W309	21/12/18	90	33.5	0.0	2.3	13.9	0.1	980	Dry	4.057	0.083	C34	CSZ	NU	NU	INU	RED	אבט	GREEN	GREEN

Ref: GE17326 Client: AMV Haulage

		Time	CH	co,		Flow	voc	Dunnanuna		GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	IBC	
Location	Date	Time	(0/)	(00)	O ₂ (%)	(I/hr)		Pressure	GWL (m bgl)	CH	CO ₂	BS8485	& C665	Flow	CH ₄	CO,	CI	H ₄	C	02
		(sec)	(%)	(%)		(I/nr)	(ppm)	(mb)		Cn ₄	CO2	CH ₄	CO ₂	FIOW	Cn ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS09	21/12/18	120	34.6	0.6	2.0	13.9	0.1	986	Dry	4.809	0.083	CS4	CS2	NO	NO	NO	RED	RED	GREEN	GREEN
WS09	21/12/18	180	35.0	0.6	1.9	13.9	0.1	986	Dry	4.865	0.083	CS4	CS2	NO	NO	NO	RED	RED	GREEN	GREEN
	Max values		53.0	1.4	21.9	13.9	0.7	1014.0	0.0	7.367	0.195	CS4	CS2	NO	NO	NO	RED	RED	GREEN	GREEN
	Min Vaules		0.0	0.0	0.0	0.0	0.0	984.0	0.0	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
ВН	I Flow LoD che	ck	53.0	1.4	21.9	0.1	-	-	-	0.053	0.001	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN

										GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	IBC	
Location	Date	Time	CH ₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				CI		-	0,
2000000	2410	(sec)	(%)	(%)	-2 (1-)	(I/hr)	(ppm)	(mb)	(28.)	CH₄	CO ₂	CH ₄	co,	Flow	CH₄	CO ₂	GSV	Conc.	GSV	Conc.
WS10	30/07/18	0	0.0	0.0	20.9	0.0	0.8	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	30/07/18	10	0.7	1.6	15.4	0.0	0.8	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	30/07/18	20	0.5	1.3	15.8	0.0	0.8	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	30/07/18	30	0.5	1.1	16.4	0.0	0.8	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	30/07/18	60	0.3	0.9	16.9	0.0	0.8	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	30/07/18	90	0.2	0.9	17.2	0.0	0.8	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	30/07/18	120	0.1	0.8	17.5	0.0	0.8	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	30/07/18	180	0.1	0.8	17.9	0.0	0.8	998	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	10/08/18	0	0.0	0.0	20.9	0.0	0.5	1006	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	10/08/18	10	0.1	2.0	17.9	0.0	0.5	1006	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	10/08/18	20	0.1	2.1	17.6	0.0	0.5	1006	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	10/08/18	30	0.1	2.0	17.7	0.0	0.5	1006	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	10/08/18	60	0.0	1.9	17.9	0.0	0.5	1006	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	10/08/18	90	0.0	1.9	18.3	0.0	0.5	1006	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	10/08/18	120	0.0	1.7	18.3	0.0	0.5	1006	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	10/08/18	180	0.0	1.7	18.3	0.0	0.5	1006	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	24/08/18	0	0.0	0.0	20.9	0.0	0.5	1001	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	24/08/18	10	0.4	2.8	17.2	0.0	0.5	1001	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	24/08/18	20	0.0	2.7	17.3	0.0	0.5	1001	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	24/08/18	30	0.0	2.4	17.6	0.0	0.5	1001	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	24/08/18	60	0.0	2.1	17.9	0.0	0.5	1001	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	24/08/18	90	0.0	2.0	18.0	0.0	0.5	1001	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	24/08/18	120	0.0	2.0	18.2	0.0	0.5	1001	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	24/08/18	180	0.0	1.8	18.4	0.0	0.5	1001	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	07/09/18	0	0.0	0.0	20.9	0.0		1002	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	07/09/18	10	0.0	1.0	19.0	0.0		1002	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	07/09/18	20	0.0	3.1	16.9	0.0		1002	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	07/09/18	30	0.0	3.0	17.0	0.0		1002	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	07/09/18	60	0.0	2.4	17.2	0.0		1002	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	07/09/18	90	0.0	2.2	17.8	0.0		1002	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	07/09/18	120	0.0	1.7	18.5	0.0		1002	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	07/09/18	180	0.0	1.7	18.5	0.0		1002	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/09/18	0	0.0	0.0	20.9	0.0	0.1	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/09/18	10	0.0	1.2	18.3	0.0	0.1	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/09/18	20	0.0	2.0	18.1	0.0	0.1	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/09/18	30	0.0	1.8	18.3	0.0	0.1	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/09/18	60	0.0	1.5	18.7	0.0	0.1	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/09/18	90	0.0	1.0	19.0	0.0	0.1	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/09/18	120	0.0	0.9	19.2	0.0	0.1	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/09/18	180	0.0	0.8	19.3	0.0	0.1	996	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	05/10/18	0	0.0	0.0	20.9	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	05/10/18	10	0.0	2.1	17.4	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	05/10/18	20	0.0	1.8	17.4	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	05/10/18	30	0.0	1.5	18.1	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	05/10/18	60	0.0	1.4	18.3	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	05/10/18	90	0.0	1.2	18.5	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	05/10/18	120	0.0	1.2	18.6	0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
44310	03/10/10	120	0.0	1.2	10.0	0.0	0.0	1000	Diy	0.000	0.000	631	CJI	IVO	INO	IVO	GILLIA	GILLIA	GILLIA	GILLIA

Ref: GE17326 Client: AMV Haulage

										GSV	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	le Check		NH	IBC	
Location	Date	Time	CH₄	CO ₂	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				C	H ₄	-	0,
20000000	2410	(sec)	(%)	(%)	-2(,	(I/hr)	(ppm)	(mb)	(28.)	CH ₄	CO ₂	CH ₄	CO,	Flow	CH₄	CO ₂	GSV	Conc.	GSV	Conc.
WS10	05/10/18	180	0.0			0.0	0.0	1000	Dry	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	19/10/18	0	0.0	0.0	20.9	0.0	0.2	1012	0.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	19/10/18	10	0.0	0.4	19.7	0.0	0.2	1012	0.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	19/10/18	20	0.0	0.3	19.8	0.0	0.2	1012	0.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	19/10/18	30	0.0	0.2	19.9	0.0	0.2	1012	0.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	19/10/18	60	0.0	0.1	20.0	0.0	0.2	1012	0.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	19/10/18	90	0.0	0.1	20.0	0.0	0.2	1012	0.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	19/10/18	120	0.0	0.1	20.0	0.0	0.2	1012	0.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	19/10/18	180	0.0	0.1	20.0	0.0	0.2	1012	0.40	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	02/11/18	0	0.0	0.0	20.9	0.0	0.0	1016	0.30	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	02/11/18	10	0.0	0.5	20.6	0.0	0.0	1016	0.30	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	02/11/18	20	0.0	0.4	20.5	0.0	0.0	1016	0.30	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	02/11/18	30	0.0	0.3	20.6	0.0	0.0	1016	0.30	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	02/11/18	60	0.0	0.2	20.8	0.0	0.0	1016	0.30	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	02/11/18	90	0.0	0.1	21.0	0.0	0.0	1016	0.30	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	02/11/18	120	0.0	0.1	21.0	0.0	0.0	1016	0.30	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	02/11/18	180	0.0	0.1	21.0	0.0	0.0	1016	0.30	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	20/11/18	0	0.0	0.0	21.9	0.1	0.1	996	0.17	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	20/11/18	10	0.0	0.0	22.0	0.1	0.1	996	0.17	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	20/11/18	20	0.0	0.0	22.0	0.1	0.1	996	0.17	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	20/11/18	30	0.0	0.0	22.0	0.1	0.1	996	0.17	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	20/11/18	60	0.0	0.0	22.0	0.1	0.1	996	0.17	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	20/11/18	90	0.0	0.0	22.0	0.1	0.1	996	0.17	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	20/11/18	120	0.0	0.0	22.0	0.1	0.1	996	0.17	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	20/11/18	180	0.0	0.0	22.0	0.1	0.1	996	0.17	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
		0	0.0	0.0	22.0	0.0	0.1	990		0.000	0.000	CS1	CS1	NO	NO NO	NO				
WS10 WS10	30/11/18	10			-	0.0			Groundlevel	0.000	0.000	CS1 CS1	CS1 CS1	NO	NO NO	NO NO	GREEN GREEN	GREEN GREEN	GREEN GREEN	GREEN GREEN
WS10 WS10	30/11/18 30/11/18	20				0.0			Groundlevel	0.000	0.000	CS1 CS1	CS1 CS1	NO	NO NO	NO	GREEN	GREEN	GREEN	GREEN
									Groundlevel			CS1	CS1	NO	_	NO				
WS10	30/11/18	30			-	0.0			Groundlevel	0.000	0.000		CS1 CS1		NO NO		GREEN	GREEN	GREEN	GREEN
WS10	30/11/18	60			-	0.0			Groundlevel	0.000	0.000	CS1		NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	30/11/18	90				0.0			Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	30/11/18	120				0.0			Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS10	30/11/18	180	0.0	0.6	20.6	0.0	0.0	1000	Groundlevel	0.000	0.000	CS1	CS1	NO	NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS10	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1008	0.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	14/12/18	10	0.0	0.2	18.2	0.0	0.0	1008	0.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	14/12/18	20	0.0	0.5	15.9	0.0	0.0	1008	0.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	14/12/18	30	0.0	0.7	16.2	0.0	0.0	1008	0.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	14/12/18	60	0.0	0.4	17.9	0.0	0.0	1008	0.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	14/12/18	90	0.0	0.4	17.9	0.0	0.0	1008	0.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	14/12/18	120	0.0	0.2	18.1	0.0	0.0	1008	0.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	14/12/18	180	0.0	0.0	18.6	0.0	0.0	1008	0.20	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/12/18	0							GroundLevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/12/18	10				-	-	-	GroundLevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/12/18	20				-	-	-	GroundLevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/12/18	30				-	-	-	GroundLevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/12/18	60				-	-	-	GroundLevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/12/18	90				-	-	-	GroundLevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN

Ref: GE17326 Client: AMV Haulage

		Time	СН	CO ₂		Flow	voc	Duccessus		GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	IBC	
Location	Date		- 4	(24)	O ₂ (%)	(l/hr)	()	Pressure	GWL (m bgl)	CH	CO,	BS8485	& C665	Flow	C	CO	CI	1 ₄	CC	02
		(sec)	(%)	(%)		(I/nr)	(ppm)	(mb)		Cn ₄	CO ₂	CH ₄	CO ₂	FIOW	CH₄	CO ₂	GSV	Conc.	GSV	Conc.
WS10	21/12/18	120				-	-	-	GroundLevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS10	21/12/18	180				-	-	-	GroundLevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Max values		0.7	3.1	22.0	0.1	0.8	1016.0	0.4	0.001	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Min Vaules		0.0	0.0	15.4	0.0	0.0	984.0	0.2	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
BH	I Flow LoD che	ck	0.7	3.1	22.0	0.1	-	-	-	0.001	0.003	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN

Ref: GE17326 Client: AMV Haulage

Company Comp											GSV	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	ВС	
W311 30/07/18 0 0 0 0 0 0 0 0 0	ation	Date	Time	CH ₄	CO2	0, (%)	Flow	voc	Pressure	GWL (m bgl)								C		-	0,
WS11 30/07/18 10 15.0 0.8 2.9 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 30/07/18 30 17.1 0.8 2.2 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 30/07/18 30 17.1 0.8 2.2 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 30/07/18 30 17.3 0.8 2.0 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 30/07/18 130 17.3 0.8 2.0 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 30/07/18 130 17.3 0.8 1.9 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 30/07/18 130 17.3 0.8 1.9 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 30/07/18 130 17.3 0.8 1.9 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 30/07/18 130 13.3 0.3 130 0.0 0.0 0.3 1006 2.85 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 10/08/18 0.0 10.0 1.0 1.0 2.4 0.0 0.3 1006 2.85 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 10/08/18 0.0 10.0 1.1 1.0 0.3 1006 2.85 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 10/08/18 0.0 10.0 1.1 1.0 0.3 1006 2.85 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 10/08/18 0.0 10.0 0.3 1006 2.85 0.000 0.000 CS1 CS1 NO CHH-CSS limit NO GEEN AMBER 2 WS11 10/08/18 0.0 10.0 0			(sec)	(%)	(%)	2 (* ')	(l/hr)	(ppm)	(mb)	(CH ₄	CO ₂	CH ₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS-11 30/07/18 20 15.5 0.8 17.0 0.0 0.0 996 22.6 0.000 0.000 CS1 CS1 NO CH-M-CSS LIIMIT NO GREN AMBER 2 WS-11 30/07/18 60 17.2 0.8 22.0 0.0 0.996 22.6 0.000 0.000 CS1 CS1 NO CH-M-CSS LIIMIT NO GREN AMBER 2 WS-11 30/07/18 80 17.3 0.8 2.0 0.0 0.996 22.6 0.000 0.000 CS1 CS1 NO CH-M-CSS LIIMIT NO GREN AMBER 2 WS-11 30/07/18 20 17.4 0.8 19 0.0 0.0 996 22.6 0.000 0.000 CS1 CS1 NO CH-M-CSS LIIMIT NO GREN AMBER 2 WS-11 30/07/18 130 17.4 0.8 1.9 0.0 0.0 996 22.6 0.000 0.000 CS1 CS1 NO CH-M-CSS LIIMIT NO GREN AMBER 2 WS-11 30/07/18 130 17.4 0.8 1.9 0.0 0.0 996 22.6 0.000 0.000 CS1 CS1 NO CH-M-CSS LIIMIT NO GREN AMBER 2 WS-11 10/08/18 0.0 0.0 0.9 0.0 0.3 30.06 22.5 0.000 0.000 CS1 CS1 NO NO NO GREN AMBER 2 WS-11 10/08/18 10 10.1 1.3 0.0 0.3 30.06 22.5 0.000 0.000 CS1 CS1 NO CM-M-CSS LIIMIT NO GREN AMBER 2 WS-11 10/08/18 10 15.0 1.1 1.3 0.0 0.3 30.06 22.5 0.000 0.000 CS1 CS1 NO CM-M-CSS LIIMIT NO GREN AMBER 2 WS-11 10/08/18 30 15.0 1.1 1.3 0.0 0.3 30.06 22.5 0.000 0.000 CS1 CS1 NO CM-M-CSS LIIMIT NO GREN AMBER 2 WS-11 10/08/18 50 16.3 12 1.1 0.0 0.3 30.06 22.5 0.000 0.000 CS1 CS1 NO CM-M-CSS LIIMIT NO GREN AMBER 2 WS-11 10/08/18 50 16.3 12 1.0 0.0 3.3 10.06 22.5 0.000 0.000 CS1 CS1 NO CM-M-CSS LIIMIT NO GREN AMBER 2 WS-11 10/08/18 50 16.3 12 1.0 0.0 0.3 10.06 22.5 0.000 0.000 CS1 CS1 NO CM-M-CSS LIIMIT NO GREN AMBER 2 WS-11 10/08/18 50 16.5 12 0.7 0.0 0.3 10.06 22.5 0.000 0.000 CS1 CS1 NO CM-M-CSS LIIMIT NO GREN AMBER 2 WS-11 10/08/18 10/08/18 10/08/18 10.000 0.000 0.000 CS1 CS1 CS1 NO	/S11	30/07/18	0	0.0	0.0	20.9	0.0	0.0	996	2.26	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11 30/07/18 30 77.1 03 22 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 30/07/18 90 17.3 0.8 2.0 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 30/07/18 120 17.4 0.8 1.9 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 30/07/18 120 17.4 0.8 1.9 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 30/07/18 180 17.3 0.8 1.9 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 30/07/18 180 17.3 0.8 1.9 0.0 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 10/08/18 10 13.0 1.0 2.4 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 10/08/18 10 13.0 1.0 1.3 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 10/08/18 30 16.0 1.2 1.1 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 10/08/18 30 16.0 1.2 1.1 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 10/08/18 30 16.0 1.2 1.1 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 10/08/18 30 16.0 1.2 1.1 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 10/08/18 30 16.0 1.2 1.1 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 10/08/18 30 16.0 1.2 1.1 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHACSSLIMIT NO GREEN AMBER 2 WS11 10/08/18 10.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	'S11	30/07/18	10	15.0	0.8	2.9	0.0	0.0	996	2.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 30/07/18 60 372 03 21 00 0.0 996 226 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 30/07/18 120 174 0.8 1.9 0.0 0.0 996 226 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 30/07/18 120 174 0.8 1.9 0.0 0.0 996 226 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 30/07/18 130 173 0.8 1.9 0.0 0.0 996 226 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 0.0 1.0 1.0 0.0 1.006 2.65 0.000 0.000 CS1 CS1 NO NO NO NO GREEN AMBER 2 WS11 10/08/18 0.0 1.0 1.0 0.0 1.006 2.65 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 20 1.50 1.1 1.3 0.0 0.3 1.006 2.65 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 20 1.50 1.1 1.3 0.0 0.3 1.006 2.65 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 50 1.6 1.2 1.1 0.0 0.3 1.006 2.65 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 50 1.6 1.2 1.0 0.0 0.3 1.006 2.65 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 50 1.6 1.2 1.0 0.0 0.3 1.006 2.65 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 100 1.6 1.2 0.7 0.0 0.3 1.006 2.65 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 1.0 0.6 1.2 0.7 0.0 0.3 1.006 2.65 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 1.0 0.6 1.0 0.0 0.3 1.006 2.65 0.000 0.000 CS1 CS1 NO CHASCSLIMIT NO GREEN AMBER 2 WS11 10/08/18 1.0 0	'S11	30/07/18	20	16.5	0.8	17.0	0.0	0.0	996	2.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 3007718 190 173 08 20 00 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CH4+CSSI limit NO GREEN AMBER 2 WS11 3007718 130 174 0.8 19 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CH4+CSSI limit NO GREEN AMBER 2 WS11 3007718 130 173 0.8 19 0.0 0.0 996 2.26 0.000 0.000 CS1 CS1 NO CH4+CSSI limit NO GREEN AMBER 2 WS11 3007718 130 130 1.0 2.4 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CM4+CSSI limit NO GREEN	'S11	30/07/18	30	17.1	0.8	2.2	0.0	0.0	996	2.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 3007/18 120 174 0.8 19 0.0 0.0 996 2.26 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 0 0.0 0.0 0.99 0.0 0.3 1006 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 0 31.00 1.30 1.0 2.4 0.0 0.3 1006 2.65 0.000 0.000 C\$1 C\$1 NO NO NO GREEN AMBER 2 WS11 3008/18 0 31.00 1.30 1.0 2.4 0.0 0.3 1006 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 2.0 15.0 1.1 1.3 0.0 0.3 1005 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 2.0 15.0 1.1 3.0 0.0 3.3 1005 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 6.0 15.0 1.1 1.0 0.3 1005 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 6.0 15.3 1.2 1.0 0.0 3.3 1005 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 6.0 15.3 1.2 1.0 0.0 3.3 1005 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 1.0 16.6 1.2 0.7 0.0 0.3 1005 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 100 16.6 1.2 0.7 0.0 0.3 1005 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 3008/18 100 16.6 1.2 0.7 0.0 0.3 1005 2.65 0.000 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 30789/18 0.0 0.0 0.0 0.0 0.000 C\$1 C\$1 NO CH4>C\$51 limit NO GREEN AMBER 2 WS11 30789/18 0.0	/S11	30/07/18	60	17.2	0.8	2.1	0.0	0.0	996	2.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 3007/18 180 173 08 19 00 00 996 2.26 0.000 0.000 CS1 CS1 NO CHACSSIMIR NO GREEN AMBER 2 CM CM CM CM CM CM CM	/S11	30/07/18	90	17.3	0.8	2.0	0.0	0.0	996	2.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 10/08/18 0 0.0 0.0 209 0.0 3.3 1006 2.55 0.000 0.000 CS1 CS1 NO NO NO NO ORIENT AMBER 2 WS11 10/08/18 20 150 1.1 1.3 0.0 0.3 1006 2.55 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 10/08/18 20 150 1.1 1.3 0.0 0.3 1006 2.55 0.000 0.000 CS1 CS1 NO CHACSSI IIIIIT NO ORIENT AMBER 2 WS11 10/08/18 20 160 12 1.1 0.0 0.3 1006 2.55 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 10/08/18 60 163 1.2 1.0 0.0 0.3 1006 2.55 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 10/08/18 100 164 12 0.7 0.0 0.3 1006 2.55 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 10/08/18 120 166 1.2 0.7 0.0 0.3 1006 2.55 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 10/08/18 120 166 1.2 0.7 0.0 0.3 1006 2.55 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 10/08/18 100 166 1.2 0.7 0.0 0.3 1006 2.55 0.000 0.000 CS1 CS1 NO CHACSSI IIIIIT NO ORIENT AMBER 2 WS11 0.006/18 180 166 1.2 0.7 0.0 0.3 1006 2.55 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 0.006/18 180 1.00 1.000 2.68 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 0.006/18 1.000 1.000 2.68 0.000 0.000 CS1 CS1 NO NO NO ORIENT AMBER 2 WS11 0.006/18 1.000 1.000 2.68 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 0.006/18 1.000 1.000 2.68 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 0.006/18 1.000 1.000 2.68 0.000 0.000 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMBER 2 WS11 0.006/18 1.0000 1.000 2.68 0.000 0.000 CS1 CS1 CS1 NO CHACSSI IIIIT NO ORIENT AMB	/S11	30/07/18	120	17.4	0.8	1.9	0.0	0.0	996	2.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 10/08/18 10 13.0 1.0 2.4 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 10/08/18 20 15.0 1.1 13.0 0.0 3.1 1006 2.65 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 10/08/18 30 16.0 1.2 1.1 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 10/08/18 30 16.0 1.2 1.1 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 10/08/18 90 16.4 1.2 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 10/08/18 10.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 10/08/18 12.0 16.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 10/08/18 10.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 10/08/18 0.000 0.000 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 0.000/18 0.0 0.000 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 0.000/18 0.000 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 0.000/18 0.0 0.000 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 0.000/18 0.000 0.000 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 0.000/18 0.000 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 0.000/18 0.000 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 0.000/18 0.000 0.000 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 0.000/18 0.000 0.000 0.000 0.000 CS1 CS1 NO CHH-CS1 limit NO GREN AMBER 2 MS11 0.0000 0.000 0.00	/S11	30/07/18	180	17.3	0.8	1.9	0.0	0.0	996	2.26	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 10/08/18 20 15.0 11 13.3 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 10/08/18 30 16.0 12 1.0 0.0 3.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 10/08/18 60 16.3 1.2 1.0 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 10/08/18 10.0 16.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 10/08/18 12.0 16.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 10/08/18 12.0 16.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 10/08/18 180 16.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 10/09/18 180 16.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 0.009/18 10.0 1.7 0.5 0.0 0.0 1.000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 0.009/18 10.0 1.7 0.5 0.0 0.0 1.000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 0.009/18 10.0 1.7 0.0 0.0 1.000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREN AMBER 2 MS11 0.009/18 10.0 1.0 0.0	'S11 :	10/08/18	0	0.0	0.0	20.9	0.0	0.3	1006	2.65	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11 10/08/18 30 160 1.2 1.1 0.0 0.3 1006 2.65 0.000 0.000 0.51 0.51 NO CH4-SS1 limit NO GREEN AMBER 2 MS11 10/08/18 90 164 1.2 0.9 0.0 0.3 1006 2.65 0.000 0.000 0.51 0.51 NO CH4-SS1 limit NO GREEN AMBER 2 MS11 10/08/18 120 166 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 0.51 0.51 NO CH4-SS1 limit NO GREEN AMBER 2 MS11 10/08/18 180 16.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 0.51 0.51 NO CH4-SS1 limit NO GREEN AMBER 2 MS11 10/08/18 180 16.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 0.51 0.51 NO CH4-SS1 limit NO GREEN AMBER 2 MS11 0.0709/18 0.0 0	'S11 :	10/08/18	10	13.0	1.0	2.4	0.0	0.3	1006	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 10/08/18 60 163 1.2 1.0 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2	/S11	10/08/18	20	15.0	1.1	1.3	0.0	0.3	1006	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 10/08/18 90 164 12 09 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2	/S11	10/08/18	30	16.0	1.2	1.1	0.0	0.3	1006	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 10/08/18 120 16.6 1.2 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2	/S11	10/08/18	60	16.3	1.2	1.0	0.0	0.3	1006	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 10/08/18 180 16.6 12 0.7 0.0 0.3 1006 2.65 0.000 0.000 CS1 CS1 NO CH4>CS1 Imit NO OREEN AMBER 2	/S11	10/08/18	90	16.4	1.2	0.9	0.0	0.3	1006	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 07/09/18 0 0.0 0.0 2.9 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO NO NO GREEN GREEN GREEN WS11 07/09/18 10 17.1 0.5 5.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 07/09/18 20 18.1 0.7 1.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 07/09/18 30 19.0 0.7 0.8 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 07/09/18 30 19.0 0.7 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 07/09/18 90 19.6 0.7 0.6 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 07/09/18 120 19.6 0.7 0.5 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 07/09/18 120 19.6 0.7 0.5 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 07/09/18 120 19.6 0.7 0.5 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 07/09/18 120 19.6 0.7 0.5 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 21/09/18 0 0.0 0.0 0.0 0.995 2.90 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 21/09/18 0 0.0 0.0 0.0 0.995 2.90 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 21/09/18 0 0.0 0.0 0.0 0.995 2.90 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 21/09/18 20 13.0 0.8 4.0 0.0 0.995 2.90 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 21/09/18 20 13.0 0.8 0.0 0.0 0.995 2.90 0.000 0.000 CS1 CS1 NO CH4-CS1 limit NO GREEN AMBER 2 WS11 21/09/18 30 3.3 0.0 0.0 0.0 0.995 2.90 0.000	/S11	10/08/18	120	16.6	1.2	0.7	0.0	0.3	1006	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 07/09/18 20 18.1 07 71.0 0.5 5.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2	/S11	10/08/18	180	16.6	1.2	0.7	0.0	0.3	1006	2.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 07/09/18 20 18.1 07 1.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2	/S11 (07/09/18	0	0.0	0.0	20.9	0.0		1000	2.68	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11 07/09/18 30 19.0 0.7 0.8 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 NO CH4>CS1 Limit NO GREEN AMBER 2 CS1 Limit NO GREEN	/S11 (07/09/18	10	17.1	0.5	5.0	0.0		1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 07/09/18 60 19.4 0.7 0.7 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2	'S11 (07/09/18	20	18.1	0.7	1.0	0.0		1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 07/09/18 90 19.6 0.7 0.6 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2	'S11 (07/09/18	30	19.0	0.7	0.8	0.0		1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 07/09/18 120 19.6 0.7 0.5 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2	'S11 (07/09/18	60	19.4	0.7	0.7	0.0		1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 07/09/18 180 19.8 0.8 0.3 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2	'S11 (07/09/18	90	19.6	0.7	0.6	0.0		1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 21/09/18 0 0.0 0.0 20.9 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO NO NO GREEN GREEN WS11 21/09/18 10 6.8 0.7 7.8 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 21/09/18 20 13.0 0.8 4.0 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 30 13.9 0.8 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 60 14.0 0.8 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 60 14.0 0.8 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 90 13.9 0.9 3.5 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 120 13.4 0.9 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 120 13.4 0.9 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 180 12.7 0.9 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 0 0.	'S11 (07/09/18	120	19.6	0.7	0.5	0.0		1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 21/09/18 10 6.8 0.7 7.8 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 21/09/18 30 13.9 0.8 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 21/09/18 60 14.0 0.8 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 21/09/18 60 14.0 0.8 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 21/09/18 90 13.9 0.9 3.5 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 21/09/18 120 13.4 0.9 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 21/09/18 120 13.4 0.9 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 21/09/18 180 12.7 0.9 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 180 12.7 0.9 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 10 14.4 0.8 1.7 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 10 14.4 0.8 1.7 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 20 17.6 0.9 0.9 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 60 19.0 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 90 19.1 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 90 19.1 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 90 19.1 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 90 19.1 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 10 19.0 19.0 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 10 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit NO GREEN AMBER 2 WS11 05/10/18 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	'S11 (07/09/18	180	19.8	0.8	0.3	0.0		1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 21/09/18 20 13.0 0.8 4.0 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 21/09/18 30 13.9 0.8 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 21/09/18 60 14.0 0.8 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 21/09/18 90 13.9 0.9 3.5 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 21/09/18 120 13.4 0.9 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 21/09/18 180 12.7 0.9 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 21/09/18 180 12.7 0.9 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 05/10/18 10 14.4 0.8 1.7 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 05/10/18 20 17.6 0.9 0.9 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 05/10/18 30 18.9 0.9 0.5 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 05/10/18 30 18.9 0.9 0.5 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 05/10/18 30 18.9 0.9 0.5 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 05/10/18 30 18.9 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 05/10/18 30 18.9 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 MS11 05/10/18 190 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1	'S11 2	21/09/18	0	0.0	0.0	20.9	0.0	0.0	995	2.90	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11 21/09/18 30 13.9 0.8 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 CS1 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 CS1	'S11 2	21/09/18	10	6.8	0.7	7.8	0.0	0.0	995	2.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 21/09/18 60 14.0 0.8 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 90 13.9 0.9 3.5 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 120 13.4 0.9 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 180 12.7 0.9 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 0 0.0 0.0 20.9 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO NO NO NO GREEN GREEN WS11 05/10/18 10 14.4 0.8 1.7 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 10 14.4 0.8 1.7 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 10 14.4 0.8 1.7 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 20 17.6 0.9 0.9 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 30 18.9 0.9 0.5 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 60 19.0 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 60 19.0 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	'S11	21/09/18	20	13.0	0.8	4.0	0.0	0.0	995	2.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 21/09/18 90 13.9 0.9 3.5 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 120 13.4 0.9 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 21/09/18 180 12.7 0.9 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 0 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 20 17.6 0.9 0.9 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO	'S11	21/09/18	30	13.9	0.8	3.7	0.0	0.0	995	2.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 21/09/18 120 13.4 0.9 3.6 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 Imit NO GREEN AMBER 2 CS1 NO CH4>CS1 Imit NO GREEN AMBER 2 CS1 CS1 NO CH4>CS1 Imit NO GREEN AMBER 2 CS1 CS1 NO CH4>CS1 Imit NO GREEN AMBER 2 CS1 CS1 CS1 NO CH4>CS1 Imit NO GREEN AMBER 2 CS1 C	'S11	21/09/18	60	14.0	0.8	3.6	0.0	0.0	995	2.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 21/99/18 180 12.7 0.9 3.7 0.0 0.0 995 2.90 0.000 0.000 CS1 CS1 NO CH4>CS1 Imit NO GREEN AMBER 2	'S11	21/09/18	90	13.9	0.9	3.5	0.0	0.0	995	2.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 05/10/18 0 0.0 0.0 20.9 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO NO NO GREEN GREEN WS11 05/10/18 10 14.4 0.8 1.7 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 Imit NO GREEN AMBER 2 CS1 CS1 CS1 NO CH4>CS1 Imit NO GREEN AMBER 2 CS1 CS1 CS1 NO CH4>CS1 Imit NO GREEN AMBER 2 CS1 CS1 CS1 NO	'S11 2	21/09/18	120	13.4	0.9	3.6	0.0	0.0	995	2.90	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 05/10/18 0 0.0 0.0 20.9 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO NO NO NO GREEN GREEN WS11 05/10/18 10 14.4 0.8 1.7 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 20 17.6 0.9 0.9 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 30 18.9 0.9 0.5 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 60 19.0 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 90 19.1 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 10 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 1 05/10/18 180 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 1 9/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 1 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 1 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 1 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 1 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 1 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2			180			3.7	0.0	0.0	995	2.90	0.000	0.000	CS1	CS1	NO		NO			GREEN	GREEN
WS11 05/10/18 10 14.4 0.8 1.7 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 20 17.6 0.9 0.9 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 30 18.9 0.9 0.5 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 60 19.0 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 90 19.1 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 105/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 10 0.0 0.0 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2			0	0.0	0.0	20.9	0.0	0.0	1000	2.68	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11 05/10/18 30 18.9 0.9 0.5 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 60 19.0 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 10 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 180 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 0 0.0 0.0 20.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2			10	14.4	0.8	1.7	0.0	0.0	1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO		AMBER 2	GREEN	GREEN
WS11 05/10/18 60 19.0 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 90 19.1 0.9 0.4 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 180 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 0 0.0 0.0 20.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO NO NO NO GREEN GREEN WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2	'S11 (05/10/18	20	17.6	0.9	0.9	0.0	0.0	1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 05/10/18 90 19.1 0.9 0.4 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 180 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 0 0.0 0.0 2.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 0 0.0 0.0 4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit <td< td=""><td>'S11 (</td><td>05/10/18</td><td>30</td><td>18.9</td><td>0.9</td><td>0.5</td><td>0.0</td><td>0.0</td><td>1000</td><td>2.68</td><td>0.000</td><td>0.000</td><td>CS1</td><td>CS1</td><td>NO</td><td>CH4>CS1 limit</td><td>NO</td><td>GREEN</td><td>AMBER 2</td><td>GREEN</td><td>GREEN</td></td<>	'S11 (05/10/18	30	18.9	0.9	0.5	0.0	0.0	1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 05/10/18 90 19.1 0.9 0.4 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 180 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 0 0.0 0.0 2.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 0 0.0 0.0 4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 l	'S11 (05/10/18	60	19.0	0.9	0.4	0.0	0.0	1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 05/10/18 120 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 05/10/18 180 19.2 0.9 0.3 0.0 0.0 1000 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 0 0.0 0.0 2.0 4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO NO NO NO GREEN AMBER 2 WS11 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.0			90	19.1	0.9	0.4	0.0	0.0	1000	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 19/10/18 0 0.0 0.0 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO NO NO GREEN GREEN WS11 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2			120			0.3	0.0	0.0	1000		0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO			GREEN	GREEN
WS11 19/10/18 0 0.0 0.0 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO NO NO GREEN GREEN WS11 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2			180	19.2		4	0.0	0.0	1000		0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN		GREEN	GREEN
WS11 19/10/18 10 6.2 1.9 3.0 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2 WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2			0	0.0		4	0.0	0.4	1011	2.68	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN		GREEN	GREEN
WS11 19/10/18 20 7.5 1.9 2.4 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2			10	6.2		4	0.0	0.4	1011						NO	CH4>CS1 limit				GREEN	GREEN
							0.0								NO					GREEN	GREEN
		19/10/18	30	7.8	1.9	2.5		0.4	1011	2.68	0.000	0.000	CS1	CS1		CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11 19/10/18 60 7.8 1.9 2.5 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2			60	7.8	1.9	2.5	0.0	0.4	1011	2.68	0.000	0.000	CS1	CS1	NO		NO	GREEN		GREEN	GREEN
WS11 19/10/18 90 7.8 1.9 2.5 0.0 0.4 1011 2.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2																				GREEN	GREEN
WS11 19/10/18 120 7.8 1.9 2.6 0.0 0.4 1011 2.68 0.00 0.000 CS1 CS1 NO CH4>CS1 limit NO GREEN AMBER 2																				GREEN	GREEN

Ref: GE17326 Client: AMV Haulage

										GSV/	'Qhgs	Characteris	tic Situation		CS1 Limiting Valu	e Check		NH	BC	
Location	Date	Time	CH ₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)	CII	60	BS8485	& C665		CII.	60	С	H ₄	C	02
		(sec)	(%)	(%)		(I/hr)	(ppm)	(mb)	, 0,	CH₄	CO ₂	CH ₄	CO ₂	Flow	CH₄	CO ₂	GSV	Conc.	GSV	Conc.
WS11	19/10/18	180	7.8	1.9	2.6	0.0	0.4	1011	2.68	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	20/11/18	0	0.0	0.0	21.4	0.3	0.0	997	2.47	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	20/11/18	10	0.0	0.5	20.6	0.3	0.0	997	2.47	0.000	0.002	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	20/11/18	20	18.2	1.3	6.4	0.3	0.0	997	2.47	0.055	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	20/11/18	30	18.2	1.3	2.9	0.3	0.0	997	2.47	0.055	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	20/11/18	60	18.2	1.3	0.7	0.3	0.0	997	2.47	0.055	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	20/11/18	90	18.2	1.3	0.4	0.3	0.0	997	2.47	0.055	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	20/11/18	120	18.2	1.3	0.4	0.3	0.0	997	2.47	0.055	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	20/11/18	180	18.2	1.3	0.4	0.3	0.0	997	2.47	0.055	0.004	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	30/11/18	0	0.0	0.0	20.9	0.0	0.1	998	2.00	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	30/11/18	10	12.3	0.3	10.7	0.0	0.1	998	2.00	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	30/11/18	20	16.2	0.7	2.3	0.0	0.1	998	2.00	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	30/11/18	30	16.6	0.7	2.1	0.0	0.1	998	2.00	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	30/11/18	60	16.8	0.7	1.4	0.0	0.1	998	2.00	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	30/11/18	90				0.0	0.1	998	2.00	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	30/11/18	120				0.0	0.1	998	2.00	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	30/11/18	180				0.0	0.1	998	2.00	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	14/12/18	0	0.0	0.0	20.9	0.0	0.0	1008	2.14	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	14/12/18	10	13.6	0.5	3.0	0.0	0.0	1008	2.14	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	14/12/18	20	16.8	0.6	0.7	0.0	0.0	1008	2.14	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	14/12/18	30	17.6	0.5	0.3	0.0	0.0	1008	2.14	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	14/12/18	60	18.1	0.6	0.1	0.0	0.0	1008	2.14	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	14/12/18	90	18.3	0.5	0.1	0.0	0.0	1008	2.14	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	14/12/18	120	18.5	0.5	0.0	0.0	0.0	1008	2.14	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	14/12/18	180	18.5	0.5	0.0	0.0	0.0	1008	2.14	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS11	21/12/18	0							Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	21/12/18	10				-	-	-	Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	21/12/18	20				-	-	-	Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	21/12/18	30				-	-	-	Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	21/12/18	60				-	-	-	Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	21/12/18	90				-	-	-	Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	21/12/18	120				-	-	-	Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS11	21/12/18	180				-	-	1	Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Max values		19.8	1.9	21.4	0.3	0.4	1011.0	2.9	0.059	0.006	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
	Min Vaules		0.0	0.0	0.0	0.0	0.0	984.0	2.0	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
ВН	Flow LoD ched	ck	19.8	1.9	21.4	0.1	-	-	-	0.020	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN

										GSV	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	BC	
Location	Date	Time	CH₄	CO2	O ₂ (%)	Flow	voc	Pressure	GWL (m bgl)				& C665				С	H ₄	-	0,
		(sec)	(%)	(%)	2 (* ')	(I/hr)	(ppm)	(mb)	(CH ₄	CO ₂	CH₄	CO,	Flow	CH ₄	CO ₂	GSV	Conc.	GSV	Conc.
WS12	30/07/18	0	0.0	0.0	20.9	0.0	0.1	998	0.88	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS12	30/07/18	10	34.1	0.0	9.8	0.0	0.1	998	0.88	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	30/07/18	20	37.0	0.0	9.8	0.0	0.1	998	0.88	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	30/07/18	30	38.1	0.0	9.4	0.0	0.1	998	0.88	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	30/07/18	60	38.5	0.0	9.3	0.0	0.1	998	0.88	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	30/07/18	90	38.6	0.0	9.1	0.0	0.1	998	0.88	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	30/07/18	120	39.5	0.0	8.7	0.0	0.1	998	0.88	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	30/07/18	180	41.4	0.0	8.5	0.0	0.1	998	0.88	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	10/08/18	0	0.0	0.0	20.9	0.2	0.1	1006	1.00	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS12	10/08/18	10	17.2	0.2	14.1	0.2	0.1	1006	1.00	0.034	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	10/08/18	20	18.6	0.2	14.1	0.2	0.1	1006	1.00	0.037	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	10/08/18	30	19.0	0.2	14.1	0.2	0.1	1006	1.00	0.038	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	10/08/18	60	19.2	0.2	14.1	0.2	0.1	1006	1.00	0.038	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	10/08/18	90	19.2	0.2	14.1	0.2	0.1	1006	1.00	0.038	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	10/08/18	120	19.4	0.2	14.0	0.2	0.1	1006	1.00	0.039	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	10/08/18	180	19.4	0.2	14.0	0.2	0.1	1006	1.00	0.039	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	24/08/18	0	0.0	0.0	20.9	0.4	0.0	1001	1.15	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS12	24/08/18	10	12.0	0.4	15.9	0.4	0.0	1001	1.15	0.048	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	24/08/18	20	13.5	0.4	15.4	0.4	0.0	1001	1.15	0.054	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	24/08/18	30	14.1	0.4	15.4	0.4	0.0	1001	1.15	0.056	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	24/08/18	60	14.2	0.4	15.4	0.4	0.0	1001	1.15	0.057	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	24/08/18	90	14.1	0.4	15.5	0.4	0.0	1001	1.15	0.056	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	24/08/18	120	14.0	0.4	15.5	0.4	0.0	1001	1.15	0.056	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	24/08/18	180	13.9	0.4	15.5	0.4	0.0	1001	1.15	0.056	0.002	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	07/09/18	0	0.0	0.0	20.9	0.0		1002	1.31	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS12	07/09/18	10	2.0	0.8	17.0	0.0		1002	1.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS12	07/09/18	20	13.2	2.0	10.1	0.0		1002	1.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	07/09/18	30	15.3	2.2	9.6	0.0		1002	1.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	07/09/18	60	16.0	2.3	9.3	0.0		1002	1.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	07/09/18	90	16.4	2.4	9.1	0.0		1002	1.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	07/09/18	120	16.5	2.4	9.1	0.0		1002	1.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	07/09/18	180	16.5	2.4	9.1	0.0		1002	1.31	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	21/09/18	0	0.0	0.0	20.9	0.0	0.0	995	1.75	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS12	21/09/18	10	12.3	0.4	14.3	0.0	0.0	995	1.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	21/09/18	20	22.4	0.7	1.2	0.0	0.0	995	1.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	21/09/18	30	23.1	0.7	0.3	0.0	0.0	995	1.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	21/09/18	60	23.5	0.7	0.1	0.0	0.0	995	1.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	21/09/18	90	23.6	0.7	0.0	0.0	0.0	995	1.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	21/09/18	120	23.6	0.7	0.0	0.0	0.0	995	1.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	21/09/18	180	23.6	0.7	0.0	0.0	0.0	995	1.75	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12	05/10/18	0	0.0	0.0	20.9	0.0	0.3	1000	1.65	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS12	05/10/18	10	15.0	1.0	0.8	0.0	0.3	1000	1.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	05/10/18	20	18.9	0.1	0.1	0.0	0.3	1000	1.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	05/10/18	30	19.0	0.0	0.1	0.0	0.3	1000	1.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	05/10/18	60	19.1	0.0	0.0	0.0	0.3	1000	1.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	05/10/18	90	19.1	0.0	0.0	0.0	0.3	1000	1.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12	05/10/18	120	19.1	0.0	0.0	0.0	0.3	1000	1.65	0.000	0.000	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN

Ref: GE17326 Client: AMV Haulage

Closation Date Close C	CO2 NO	GSV GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN	CH4 Conc. AMBER 2 GREEN AMBER 2 AMBER 2 AMBER 2 AMBER 2 AMBER 2	GSV GREEN GREEN GREEN GREEN GREEN	CO ₂ Conc. GREEN GREEN GREEN GREEN
WS12 19/10/18 10 11 10 10 10 10 10	NO NO NO NO NO NO NO NO NO NO NO	GREEN GREEN GREEN GREEN GREEN GREEN GREEN GREEN	AMBER 2 GREEN AMBER 2 AMBER 2 AMBER 2 AMBER 2	GREEN GREEN GREEN GREEN GREEN	GREEN GREEN GREEN GREEN
WS12 19/10/18 0 0.0 0.0 0.08 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO NO NO WS12 19/10/18 10 11.4 0.6 1.3 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 20 14.4 0.5 0.2 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 30 15.3 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 0.0 15.8 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 90 15.9 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 90 15.9 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 120 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 180 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 180 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 0 0.0 0.0 0.10 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 0 0.0 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 0 0.0 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 0.0 0.0 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 0.0 0.0 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 10 0.0 0.0 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 10 0.0 0.0 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NO NO NO NO NO NO NO NO NO NO	GREEN GREEN GREEN GREEN GREEN GREEN	GREEN AMBER 2 AMBER 2 AMBER 2 AMBER 2	GREEN GREEN GREEN GREEN	GREEN GREEN GREEN
WS12 19/10/18 10 114 0.6 1.3 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4PSS1 limit	NO N	GREEN GREEN GREEN GREEN GREEN	AMBER 2 AMBER 2 AMBER 2 AMBER 2	GREEN GREEN GREEN	GREEN GREEN
WS12 19/10/18 20 14.4 0.5 0.2 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 30 15.3 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 90 15.9 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 10.10 10.10 10.10 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 120 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 120 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 19/10/18 180 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 0.0 0.0 0.0 0.1 0.1 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 0.0 0.0 0.0 0.1 0.1 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 0.0 0.0 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 0.0 3.49 0.9 1.56 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 30 33.5 0.0 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 60 33.5 1.0 0.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 80 33.5 1.0 0.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 90 33.5 1.0 0.4 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 80 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 80 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 0.7/11/18 10 1.7 2.2 18.3 0.1 0.0 998 0.68 0.018 0.000 0.000 CS1 CS1	NO N	GREEN GREEN GREEN GREEN	AMBER 2 AMBER 2 AMBER 2	GREEN GREEN	GREEN
W512 19/10/18 30 15.3 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 C51 C51 NO CH4>C51 limit W512 19/10/18 90 15.9 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 C51 C51 NO CH4>C51 limit W512 19/10/18 120 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 C51 C51 NO CH4>C51 limit W512 19/10/18 180 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 C51 C51 NO CH4>C51 limit W512 19/10/18 180 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 C51 C51 NO CH4>C51 limit W512 19/10/18 180 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 10 23.6 0.9 15.6 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 10 23.6 0.9 15.6 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 30 33.5 0.9 1.5 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 30 33.5 0.9 1.5 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 60 33.5 1.0 0.5 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 10 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 180 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 180 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 180 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 180 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 180 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 C51 C51 NO CH4>C51 limit W512 0.7(11/18 180 3.4 1	NO NO NO NO NO NO NO	GREEN GREEN GREEN	AMBER 2 AMBER 2	GREEN	
WS12	NO NO NO NO NO NO	GREEN GREEN	AMBER 2		
WS12	NO NO NO NO NO	GREEN			GREEN
WS12	NO NO NO NO			GREEN	GREEN
WS12 19/10/18 180 16.0 0.6 0.0 0.0 0.0 1012 1.70 0.000 0.000 CS1 CS1 NO CH4≻CS1 limit	NO NO NO	CDEEN	AMBER 2	GREEN	GREEN
WS12 02/11/18 0 0.0 0.0 21.7 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO NO NO WS12 02/11/18 10 23.6 0.9 15.6 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit CS1 VS12 02/11/18 20 34.9 0.9 2.4 0.0 0.0 0.015 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit WS12 02/11/18 30 33.5 0.9 1.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit WS12 02/11/18 60 33.5 1.0 0.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit WS12 02/11/18 90 33.5 1.0 0.4 0.0 0.0 0.015 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit WS12 02/11/18 1.0 0.3 0.0 0.0 0.0 1.15 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit WS12 02/11/18 1.0 0.3 0.0 0.0 0.0 1.15 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit WS12 02/11/18 1.0 0.3 0.0 0.0 0.0 1.15 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit WS12 02/11/18 1.0 0.3 0.0 0.0 0.0 0.0 1.15 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit WS12 02/11/18 0 0.0 0.0 0.0 0.0 0.0 1.15 1.80 0.000 0.000 CS1 CS1 NO CH49CS1 limit WS12 02/11/18 0 0.0	NO NO NO	UKLLIN	AMBER 2	GREEN	GREEN
WS12 02/11/18 10 23.6 0.9 15.6 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 20 34.9 0.9 2.4 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 30 33.5 0.9 1.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 60 33.5 1.0 0.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 90 33.5 1.0 0.4 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 90 33.5 1.0 0.4 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 120 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 180 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 180 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 10 1.7 2.2 18.3 0.1 0.0 998 0.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 10 1.7 2.2 18.3 0.1 0.0 998 0.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 30 18.0 2.5 3.2 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 30 18.0 2.5 3.2 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 30 18.0 2.5 3.2 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 90 18.1 2.5 2.4 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 90 18.1 2.5 2.4 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 10 1.3 0.5 0.0 0.0 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 90 18.	NO NO	GREEN	AMBER 2	GREEN	GREEN
WS12 02/11/18 20 34.9 0.9 2.4 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 30 33.5 0.9 1.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 60 33.5 1.0 0.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 90 33.5 1.0 0.4 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 120 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 180 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 02/11/18 180 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 0 0.0 0.0 0.0 20.8 0.1 0.0 998 0.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 0 0.0 0.0 0.0 0.0 0.0 998 0.68 0.000 0.000 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 10 1.7 2.2 18.3 0.1 0.0 998 0.68 0.002 0.002 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 30 18.0 2.5 3.2 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 60 18.1 2.5 2.5 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 90 18.1 2.5 2.4 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 10 1.3 0.5 0.0 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 10 1.3 0.5 0.0 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 10 1.3 0.5 0.0 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 20/11/18 10 1.3 0.5 0.0 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 10 1.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NO	GREEN	GREEN	GREEN	GREEN
WS12 O2/11/18 30 33.5 0.9 1.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit		GREEN	RED	GREEN	GREEN
WS12 O2/11/18 60 33.5 1.0 0.5 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit		GREEN	RED	GREEN	GREEN
WS12 O2/11/18 90 33.5 1.0 0.4 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 Imit	NO	GREEN	RED	GREEN	GREEN
WS12 02/11/18 120 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12 02/11/18 120 33.4 1.0 0.3 0.0 0.0 1015 1.80 0.000 0.000 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12 20/11/18 0 0.0 0.0 20.8 0.1 0.0 998 0.68 0.000 0.000 CS1 CS1 NO NO NO WS12 20/11/18 10 1.7 2.2 18.3 0.1 0.0 998 0.68 0.002 0.002 CS1 CS1 NO CH4>CS1 limit CS1 CS1 NO CH4>CS1 limit CS1 CS1	NO	GREEN	RED	GREEN	GREEN
WS12 20/11/18 10 1.7 2.2 18.3 0.1 0.0 998 0.68 0.002 0.002 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN
WS12 20/11/18 20 17.8 2.5 5.5 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	GREEN	GREEN	GREEN
WS12 20/11/18 30 18.0 2.5 3.2 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	AMBER 1	GREEN	GREEN
WS12 20/11/18 60 18.1 2.5 2.5 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12 20/11/18 90 18.1 2.5 2.4 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12 20/11/18 120 18.1 2.5 2.4 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12 20/11/18 180 18.1 2.5 2.4 0.1 0.0 998 0.68 0.018 0.003 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	AMBER 2	GREEN	GREEN
WS12 30/11/18 0 0.0 0.0 21.3 0.1 0.2 998 0.47 0.000 0.000 CS1 CS1 NO NO WS12 30/11/18 10 1.3 0.5 20.6 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 20 2.1 1.0 18.9 0.1 0.2 998 0.47 0.002 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 30 1.6 0.9 19.2 0.1 0.2 998 0.47 0.002 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 60 1.3 0.7 19.7 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 90 0.9 0.5 20.2 0.1 0.2 <td>NO</td> <td>GREEN</td> <td>AMBER 2</td> <td>GREEN</td> <td>GREEN</td>	NO	GREEN	AMBER 2	GREEN	GREEN
WS12 30/11/18 10 1.3 0.5 20.6 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 20 2.1 1.0 18.9 0.1 0.2 998 0.47 0.002 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 30 1.6 0.9 19.2 0.1 0.2 998 0.47 0.002 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 60 1.3 0.7 19.7 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 90 0.9 0.5 20.2 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO NO NO WS12 30/11/18 120 0.7 0.4 20.5 0.1 </td <td>NO</td> <td>GREEN</td> <td>AMBER 2</td> <td>GREEN</td> <td>GREEN</td>	NO	GREEN	AMBER 2	GREEN	GREEN
WS12 30/11/18 20 2.1 1.0 18.9 0.1 0.2 998 0.47 0.002 0.001 CS1 CS1 NO CH4>CS1 limit	NO	GREEN	GREEN	GREEN	GREEN
WS12 30/11/18 30 1.6 0.9 19.2 0.1 0.2 998 0.47 0.002 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 60 1.3 0.7 19.7 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 90 0.9 0.5 20.2 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO NO WS12 30/11/18 120 0.7 0.4 20.5 0.1 0.2 998 0.47 0.001 0.000 CS1 CS1 NO NO WS12 30/11/18 180 0.6 0.3 20.7 0.1 0.2 998 0.47 0.001 0.000 CS1 CS1 NO NO WS12 14/12/18 0 0.0 20.9 13.8 0.0 1008 0.28	NO	GREEN	AMBER 1	GREEN	GREEN
WS12 30/11/18 60 1.3 0.7 19.7 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO CH4>CS1 limit WS12 30/11/18 90 0.9 0.5 20.2 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO NO WS12 30/11/18 120 0.7 0.4 20.5 0.1 0.2 998 0.47 0.001 0.000 CS1 CS1 NO NO WS12 30/11/18 180 0.6 0.3 20.7 0.1 0.2 998 0.47 0.001 0.000 CS1 CS1 NO NO WS12 14/12/18 0 0.0 20.9 13.8 0.0 1008 0.28 0.000 0.000 CS1 CS1 NO NO	NO	GREEN	AMBER 1	GREEN	GREEN
WS12 30/11/18 90 0.9 0.5 20.2 0.1 0.2 998 0.47 0.001 0.001 CS1 CS1 NO NO WS12 30/11/18 120 0.7 0.4 20.5 0.1 0.2 998 0.47 0.001 0.000 CS1 CS1 NO NO WS12 30/11/18 180 0.6 0.3 20.7 0.1 0.2 998 0.47 0.001 0.000 CS1 CS1 NO NO WS12 14/12/18 0 0.0 20.9 13.8 0.0 1008 0.28 0.000 0.000 CS1 CS1 NO NO	NO	GREEN	AMBER 1	GREEN	GREEN
WS12 30/11/18 120 0.7 0.4 20.5 0.1 0.2 998 0.47 0.001 0.000 CS1 CS1 NO NO WS12 30/11/18 180 0.6 0.3 20.7 0.1 0.2 998 0.47 0.001 0.000 CS1 CS1 NO NO WS12 14/12/18 0 0.0 20.9 13.8 0.0 1008 0.28 0.000 0.000 CS1 CS1 NO NO	NO	GREEN	AMBER 1	GREEN	GREEN
WS12 30/11/18 180 0.6 0.3 20.7 0.1 0.2 998 0.47 0.001 0.000 CS1 CS1 NO NO WS12 14/12/18 0 0.0 20.9 13.8 0.0 1008 0.28 0.000 0.000 CS1 CS1 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 14/12/18 0 0.0 0.0 20.9 13.8 0.0 1008 0.28 0.000 0.000 CS1 CS1 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 14/12/18 0 0.0 0.0 20.9 13.8 0.0 1008 0.28 0.000 0.000 CS1 CS1 NO NO	NO	GREEN	GREEN	GREEN	GREEN
	NO	GREEN	GREEN	GREEN	GREEN
WS12 14/12/18 10 0.4 1.0 17.0 13.8 0.0 1008 0.28 0.055 0.138 CS1 CS2 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 14/12/18 20 0.4 0.8 17.2 13.8 0.0 1008 0.28 0.055 0.110 CS1 CS2 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 14/12/18 30 0.2 0.7 17.7 13.8 0.0 1008 0.28 0.028 0.097 CS1 CS2 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 14/12/18 60 0.1 0.6 17.7 13.8 0.0 1008 0.28 0.014 0.083 CS1 CS2 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 14/12/18 90 0.0 0.6 18.0 13.8 0.0 1008 0.28 0.000 0.083 CS1 CS2 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 14/12/18 120 0.0 0.6 18.0 13.8 0.0 1008 0.28 0.000 0.083 CS1 CS2 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 14/12/18 180 0.0 0.6 17.0 13.8 0.0 1008 0.28 0.000 0.083 CS1 CS2 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 21/12/18 0 Groundlevel 0.000 0.000 CS1 CS1 NO NO	INO	GREEN	GREEN	GREEN	GREEN
W512 21/12/18 10 Groundlevel 0.000 0.000 CS1 CS1 NO NO	NO	GREEN	GREEN	GREEN	GREEN
WS12 21/12/18 20 Groundlevel 0.000 0.000 CS1 CS1 NO NO		GREEN	GREEN	GREEN	GREEN
WS12 21/12/18 30 Groundlevel 0.000 0.000 CS1 CS1 NO NO	NO	GREEN	GREEN	GREEN	GREEN
W512 21/12/18 60 Groundlevel 0.000 0.000 CS1 CS1 NO NO	NO NO	GREEN	GREEN	GREEN	GREEN
WS12 21/12/18 90 Groundlevel 0.000 0.000 CS1 CS1 NO NO	NO NO NO	GREEN	GREEN	GREEN	GREEN

Ref: GE17326 Client: AMV Haulage

		Time	СН	CO,		Flow	voc	Duccessus		GSV/	/Qhgs	Characteris	tic Situation		CS1 Limiting Valu	ie Check		NH	IBC	
Location	Date	Time	- 4	(0/)	O ₂ (%)	(I/hr)		Pressure	GWL (m bgl)	CII	CO	BS8485	& C665	Flow	CH₄	CO,	CI	H ₄	CC	02
		(sec)	(%)	(%)		(I/nr)	(ppm)	(mb)		CH ₄	CO ₂	CH ₄	CO ₂	FIOW	Cn ₄	CO2	GSV	Conc.	GSV	Conc.
WS12	21/12/18	120				-	-	-	Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
WS12	21/12/18	180				-	-	-	Groundlevel	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
	Max values		41.4	2.5	21.7	13.8	0.3	1015.0	1.8	5.713	0.345	CS4	CS2	NO	NO	NO	RED	RED	GREEN	GREEN
	Min Vaules		0.0	0.0	0.0	0.0	0.0	984.0	0.3	0.000	0.000	CS1	CS1	NO	NO	NO	GREEN	GREEN	GREEN	GREEN
ВН	Flow LoD ched	ck	41.4	2.5	21.7	0.1	-	-	-	0.041	0.003	CS1	CS1	NO	CH4>CS1 limit	NO	GREEN	RED	GREEN	GREEN

APPENDIX D

Geochemical Laboratory Results (Soil, Waste, Leachate, and Surface Water)

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618 Facsimile: (01424) 729911 info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 18-18532

Issue: 1

Date of Issue: 24/07/2018

Contact: Laura Legate

Customer Details: GESL

Unit 7

Danworth Farm Hurstpierpoint West Sussex BN6 9GL

Quotation No: Q14-00021

Order No: PO-0536

Customer Reference: GE17326

Date Received: 12/07/2018

Date Approved: 24/07/2018

Details: Evergreen Farm, East Grinstead

Approved by:

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683)

Sample Summary

Report No.: 18-18532

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
142880	HP01 0.10	05/07/2018	12/07/2018		
142881	HP02 0.30	05/07/2018	12/07/2018		
142882	HP03 0.20	05/07/2018	12/07/2018		
142883	WS01 0.10	09/07/2018	12/07/2018	Silty loam	
142884	WS01 0.50	09/07/2018	12/07/2018	Sand + sandstone	
142885	WS01 1.50	09/07/2018	12/07/2018	Sand	
142886	WS01 2.50	09/07/2018	12/07/2018		
142887	WS01 3.50	09/07/2018	12/07/2018		
142888	WS01 4.50	09/07/2018	12/07/2018	Sand	
142889	WS02 0.20	10/07/2018	12/07/2018		
142890	WS02 0.70	10/07/2018	12/07/2018		
142891	WS02 1.70	10/07/2018	12/07/2018		
142892	WS02 2.70	10/07/2018	12/07/2018	Silty loam	
142893	WS02 3.70	10/07/2018	12/07/2018	Silty clayey loam	
142894	WS02 4.70	10/07/2018	12/07/2018		
142895	WS03 0.20	09/07/2018	12/07/2018	Silty loam	
142896	WS03 0.50	09/07/2018	12/07/2018	Silty loam	
142897	WS03 1.50	09/07/2018	12/07/2018		
142898	WS03 2.50	09/07/2018	12/07/2018	Silty loam	
142899	WS04 0.20	09/07/2018	12/07/2018	Allow with Income	-
142900	WS04 0.50	09/07/2018	12/07/2018	chalky silt loam	-
142901	WS04 1.50 WS04 2.50	09/07/2018	12/07/2018	Sandy silty loam	+
142902 142903		09/07/2018 09/07/2018	12/07/2018 12/07/2018	Silty loam	+
142903	WS04 3.50 WS04 4.50	09/07/2018		Cilty loom	
142904	WS05 0.50	05/07/2018	12/07/2018	Silty loam	
142905	WS05 0.50 WS05 1.50	05/07/2018	12/07/2018 12/07/2018	Silty clayey loam	+
142906	WS05 1.50 WS05 2.50	05/07/2018	12/07/2018	Silty clayey loam	+
142908	WS05 2.50 WS05 3.50	05/07/2018	12/07/2018	Silty loam	+
142909	WS05 4.50	05/07/2018	12/07/2018	Sandy silty loam	
142910	WS06 0.20	10/07/2018	12/07/2018	Silty loam	
142911	WS06 0.70	10/07/2018	12/07/2018		
142912	WS06 1.70	10/07/2018	12/07/2018		
142913	WS06 2.70	10/07/2018	12/07/2018	Sandy loam	
142914	WS06 3.70	10/07/2018	12/07/2018		
142915	WS06 4.70	10/07/2018	12/07/2018	Sandy loam	
142916	WS07 0.10	09/07/2018	12/07/2018		
142917	WS07 0.50	09/07/2018	12/07/2018	Sand	
142918	WS07 1.50	09/07/2018	12/07/2018		
142919	WS07 1.90	09/07/2018	12/07/2018		
142920	WS08 0.30	05/07/2018	12/07/2018	Silty loam	
142921	WS08 1.00	05/07/2018	12/07/2018		
142922	WS08 2.00	05/07/2018	12/07/2018	Silty loam	
142923	WS08 3.00	05/07/2018	12/07/2018		
142924	WS08 4.50	05/07/2018	12/07/2018	Silty clayey loam	
142925	WS09 0.20	05/07/2018	12/07/2018	Sandy loam	
142926	WS09 0.50	05/07/2018	12/07/2018	law i	
142927	WS09 1.50	05/07/2018	12/07/2018	Silty loam	
142928	WS09 2.50	05/07/2018	12/07/2018	Silty loam	
142929	WS09 3.50	05/07/2018	12/07/2018	Sandy silty loam	
142930	WS10 0.30	05/07/2018	12/07/2018	<u> </u>	+
142931	WS11 0.20	10/07/2018	12/07/2018	Cilty Inom	+
142932	WS11 0.60	10/07/2018	12/07/2018	Silty loam	+
142933 142934	WS11 1.60	10/07/2018	12/07/2018	Silty loam	+
142934	WS11 2.60 WS11 3.60	10/07/2018 10/07/2018	12/07/2018 12/07/2018	Silty loam	+
142935	WS11 3.60 WS11 4.60	10/07/2018	12/07/2018	Silty loam	+
142937	WS12 0.20	10/07/2018	12/07/2018	Silty loam	+
142937	WS12 0.20 WS12 0.70	10/07/2018	12/07/2018	Only Isam	1
142939	WS12 0.70	10/07/2018	12/07/2018	Sandy silty loam	+
142939	WS12 1.70 WS12 2.80	10/07/2018	12/07/2018	Silty loam	+
142941	WS12 3.80	10/07/2018	12/07/2018	Silty loam	
142942	WS12 4.80	10/07/2018	12/07/2018	- 7 - 	
142943	TP01 0.10	06/07/2018	12/07/2018		1
		. 53.5.72010	, 0., _010	·	

Sample Summary

Report No.: 18-18532

142944 TPO1 0.70	Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
H2346	142944	TP01 0.70				
142948 TPOS 0.10	142945	TP02 0.15	06/07/2018	12/07/2018		
142948	142946	TP02 0.50	06/07/2018	12/07/2018		
142949 TP-00 0.20	142947	TP03 0.10	05/07/2018	12/07/2018	Silty loam	
142950	142948	TP03 0.70	05/07/2018	12/07/2018		
142961 TP06 0.60			06/07/2018	12/07/2018		
142862 TF06 0.90			06/07/2018	12/07/2018		
142984						
142995					Silty loam	
142955 TP07 0.15						
142986						
142987 TP08HP 0.10 0807/2018 1207/2018						
142988 TP08HP 0.30 0807/2018 1207/2018						
142998 TPO8HP 0.70 0807/2018 1207/2018						
142980 TP09 0.40						
142961						
142962	-					
142963	-					
142964						
142965 TP11 0.50						
142966 TP12 0.25						+
142967						+
142968					Sandy loam	
142989					Carray roam	
142970						
142971 TP14 0.70						
142972	-				Silty loam	
142974	142972	TP16/HP 0.20				
142975	142973	TP16/HP 0.50	09/07/2018	12/07/2018		
142976	142974	TP16 0.40	06/07/2018	12/07/2018		
142977	142975	TP17/HP 0.20	09/07/2018	12/07/2018	Silty loam	
142978	142976	TP17/HP 0.50	09/07/2018	12/07/2018		
142979	142977		09/07/2018	12/07/2018		
142980	-	TP18 0.50	09/07/2018	12/07/2018		
142981	-				Silty loam + stones	
142982 TP19 1.00 05/07/2018 12/07/2018 () <td< td=""><td>-</td><td></td><td></td><td></td><td>Silty loam</td><td></td></td<>	-				Silty loam	
142983 TP19 1.50 05/07/2018 12/07/2018 ————————————————————————————————————						
142984 TP20 0.05 11/07/2018 12/07/2018 ————————————————————————————————————						
142985 TP20 0.40 11/07/2018 12/07/2018 142986 TP21 0.20 06/07/2018 12/07/2018 142987 TP24 0.30 05/07/2018 12/07/2018 142988 TP24 1.00 05/07/2018 12/07/2018 142989 TP24 1.50 05/07/2018 12/07/2018 142990 TP25 0.50 05/07/2018 12/07/2018 142991 TP25 0.00 05/07/2018 12/07/2018 142992 TP25 3.00 05/07/2018 12/07/2018 142993 TP26 0.10 09/07/2018 12/07/2018 142994 TP26 0.50 09/07/2018 12/07/2018 142995 TP26 1.00 09/07/2018 12/07/2018 142996 TP27 0.10 09/07/2018 12/07/2018 142997 TP27 0.50 09/07/2018<						
142986 TP21 0.20 06/07/2018 12/07/2018 Image: Control of the co						
142987 TP24 0.30 05/07/2018 12/07/2018 Silty loam 142988 TP24 1.00 05/07/2018 12/07/2018 1 142989 TP24 1.50 05/07/2018 12/07/2018 Silty loam g 142990 TP25 0.50 05/07/2018 12/07/2018 Sandy silty loam 1 142991 TP25 2.00 05/07/2018 12/07/2018 Sandy silty loam 1 142992 TP25 3.00 05/07/2018 12/07/2018 Sandy silty loam 1 142993 TP26 0.10 09/07/2018 12/07/2018 1 1 142994 TP26 0.50 09/07/2018 12/07/2018 Silty loam 1 1 142995 TP26 1.00 09/07/2018 12/07/2018 Silty loam 1						
142988 TP24 1.00 05/07/2018 12/07/2018 g 142989 TP24 1.50 05/07/2018 12/07/2018 Silty loam g 142990 TP25 0.50 05/07/2018 12/07/2018 Sandy silty loam 142991 TP25 2.00 05/07/2018 12/07/2018 Sandy silty loam 142992 TP25 3.00 05/07/2018 12/07/2018 Sandy silty loam 142993 TP26 0.10 09/07/2018 12/07/2018 Silty loam 142994 TP26 0.50 09/07/2018 12/07/2018 Silty loam 142995 TP26 1.00 09/07/2018 12/07/2018 Silty loam 142996 TP27 0.10 09/07/2018 12/07/2018 Silty loam 142997 TP27 0.50 09/07/2018 12/07/2018 Silty loam 142998 TP27 1.00 09/07/2018 12/07/2018 Silty loam 142999 TP27 2.00 09/07/2018 12/07/2018					City I a see	
142989 TP24 1.50 05/07/2018 12/07/2018 Silty loam g 142990 TP25 0.50 05/07/2018 12/07/2018 Sandy silty loam					Sity idam	+
142990 TP25 0.50 05/07/2018 12/07/2018 Sandy silty loam 142991 TP25 2.00 05/07/2018 12/07/2018 Sandy silty loam 142992 TP25 3.00 05/07/2018 12/07/2018 12/07/2018 142993 TP26 0.10 09/07/2018 12/07/2018 Silty loam 142994 TP26 0.50 09/07/2018 12/07/2018 Silty loam 142995 TP26 1.00 09/07/2018 12/07/2018 Silty loam 142996 TP27 0.10 09/07/2018 12/07/2018 Silty loam 142997 TP27 0.50 09/07/2018 12/07/2018 Silty loam 142998 TP27 1.00 09/07/2018 12/07/2018 Silty loam 143000 TP29 0.50 10/07/2018 12/07/2018 Silty loam 143001 TP29 1.50 10/07/2018 12/07/2018 Silty loam 143002 TP30 0.50 05/07/2018 12/07/2018 Silty	-				Silty Ioom	10
142991 TP25 2.00 05/07/2018 12/07/2018 Sandy sitty loam 142992 TP25 3.00 05/07/2018 12/07/2018 12/07/2018 142993 TP26 0.10 09/07/2018 12/07/2018 12/07/2018 142994 TP26 0.50 09/07/2018 12/07/2018 Silty loam 142995 TP26 1.00 09/07/2018 12/07/2018 12/07/2018 142996 TP27 0.10 09/07/2018 12/07/2018 12/07/2018 142997 TP27 0.50 09/07/2018 12/07/2018 Silty loam 142998 TP27 1.00 09/07/2018 12/07/2018 Silty loam 143000 TP29 0.50 10/07/2018 12/07/2018 Silty loam 143001 TP29 1.50 10/07/2018 12/07/2018 Silty loam 143002 TP30 0.50 05/07/2018 12/07/2018 Silty loam 143003 TP30 1.50 05/07/2018 12/07/2018 Sandy silty	-		1			9
142992 TP25 3.00 05/07/2018 12/07/2018 ————————————————————————————————————						
142993 TP26 0.10 09/07/2018 12/07/2018 Silty loam 142994 TP26 0.50 09/07/2018 12/07/2018 Silty loam 142995 TP26 1.00 09/07/2018 12/07/2018 Silty loam 142996 TP27 0.10 09/07/2018 12/07/2018 Silty loam 142997 TP27 0.50 09/07/2018 12/07/2018 Silty loam 142998 TP27 1.00 09/07/2018 12/07/2018 Silty loam 143000 TP29 0.50 10/07/2018 12/07/2018 Silty loam 143001 TP29 1.50 10/07/2018 12/07/2018 Silty loam 143002 TP30 0.50 05/07/2018 12/07/2018 Silty loam 143003 TP30 1.50 05/07/2018 12/07/2018 Sandy silty loam 143004 TP30 2.50 05/07/2018 12/07/2018 Sandy silty loam 143005 TP30 0.10 05/07/2018 12/07/2018 Sandy silty loam 143006 TP31 0.50 05/07/2018 12/07/2018 Loamy sand					Carray Sitty Ioani	+
142994 TP26 0.50 09/07/2018 12/07/2018 Silty loam 142995 TP26 1.00 09/07/2018 12/07/2018						+
142995 TP26 1.00 09/07/2018 12/07/2018 ————————————————————————————————————					Silty loam	+
142996 TP27 0.10 09/07/2018 12/07/2018 ————————————————————————————————————						
142997 TP27 0.50 09/07/2018 12/07/2018 Silty loam 142998 TP27 1.00 09/07/2018 12/07/2018 Silty loam 142999 TP27 2.00 09/07/2018 12/07/2018 Silty loam 143000 TP29 0.50 10/07/2018 12/07/2018 Silty loam 143001 TP29 1.50 10/07/2018 12/07/2018 Silty loam 143002 TP30 0.50 05/07/2018 12/07/2018 Silty loam 143003 TP30 1.50 05/07/2018 12/07/2018 Sandy silty loam 143004 TP30 2.50 05/07/2018 12/07/2018 Sandy silty loam 143005 TP30 0.10 05/07/2018 12/07/2018 Loamy sand						
142998 TP27 1.00 09/07/2018 12/07/2018 Silty loam 142999 TP27 2.00 09/07/2018 12/07/2018 Silty loam 143000 TP29 0.50 10/07/2018 12/07/2018 Silty loam 143001 TP29 1.50 10/07/2018 12/07/2018 Silty loam 143002 TP30 0.50 05/07/2018 12/07/2018 Silty loam 143003 TP30 1.50 05/07/2018 12/07/2018 Sandy silty loam 143004 TP30 2.50 05/07/2018 12/07/2018 Sandy silty loam 143005 TP30 0.10 05/07/2018 12/07/2018 Loamy sand 143006 TP31 0.50 05/07/2018 12/07/2018 Loamy sand						
142999 TP27 2.00 09/07/2018 12/07/2018 Silty loam 143000 TP29 0.50 10/07/2018 12/07/2018 143001 TP29 1.50 10/07/2018 12/07/2018 Silty loam 143002 TP30 0.50 05/07/2018 12/07/2018 143003 TP30 1.50 05/07/2018 12/07/2018 143004 TP30 2.50 05/07/2018 12/07/2018 Sandy silty loam 143005 TP30 0.10 05/07/2018 12/07/2018 Loamy sand 143006 TP31 0.50 05/07/2018 12/07/2018 Loamy sand					Silty loam	
143000 TP29 0.50 10/07/2018 12/07/2018	-					
143001 TP29 1.50 10/07/2018 12/07/2018 Silty loam 143002 TP30 0.50 05/07/2018 12/07/2018 143003 TP30 1.50 05/07/2018 12/07/2018 143004 TP30 2.50 05/07/2018 12/07/2018 Sandy silty loam 143005 TP30 0.10 05/07/2018 12/07/2018 Loamy sand 143006 TP31 0.50 05/07/2018 12/07/2018 Loamy sand						
143002 TP30 0.50 05/07/2018 12/07/2018 143003 TP30 1.50 05/07/2018 12/07/2018 143004 TP30 2.50 05/07/2018 12/07/2018 Sandy silty loam 143005 TP30 0.10 05/07/2018 12/07/2018 143006 TP31 0.50 05/07/2018 12/07/2018 Loamy sand					Silty loam	
143003 TP30 1.50 05/07/2018 12/07/2018						
143004 TP30 2.50 05/07/2018 12/07/2018 Sandy silty loam 143005 TP30 0.10 05/07/2018 12/07/2018 ————————————————————————————————————						
143006 TP31 0.50 05/07/2018 12/07/2018 Loamy sand					Sandy silty loam	
143006 TP31 0.50 05/07/2018 12/07/2018 Loamy sand	143005	TP30 0.10	05/07/2018	12/07/2018		
143007 TP31 1.50 05/07/2018 12/07/2018	143006		05/07/2018	12/07/2018	Loamy sand	
	143007	TP31 1.50	05/07/2018	12/07/2018		

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
143008	TP31 2.50	05/07/2018	12/07/2018	Loamy sand	
143009	TP32 0.10	11/07/2018	12/07/2018		
143010	TP32 0.50	11/07/2018	12/07/2018	Loamy sand	
143011	TP32 1.20	11/07/2018	12/07/2018		
143012	TP32 2.50	11/07/2018	12/07/2018		
143013	TP34/HP 0.60	10/07/2018	12/07/2018		
143014	TP34/HP 0.90	10/07/2018	12/07/2018		
143015	TP35 0.40	11/07/2018	12/07/2018	Silty loam	
143016	TP35 1.30	11/07/2018	12/07/2018	Silty loam	
143017	TP35 2.80	11/07/2018	12/07/2018		
143018	TP36 0.10	09/07/2018	12/07/2018	Silty loam	
143019	TP36 0.50	09/07/2018	12/07/2018		
143020	TP36 1.50	09/07/2018	12/07/2018		
143021	TP37 0.50	09/07/2018	12/07/2018	Silty loam + stones	
143022	TP37 1.00	09/07/2018	12/07/2018		
143023	TP37 2.00	09/07/2018	12/07/2018	Silty loam	
143024	TP37 3.00	09/07/2018	12/07/2018	Silty loam	
143025	TP38 0.05	10/07/2018	12/07/2018		
143026	TP38 0.50	10/07/2018	12/07/2018		
143027	TP38 1.25	10/07/2018	12/07/2018		
143028	TP38 2.75	10/07/2018	12/07/2018		
143029	TP39 0.70	10/07/2018	12/07/2018		
143030	TP39 1.70	10/07/2018	12/07/2018	Silty loam	
143031	TP40 0.50	09/07/2018	12/07/2018		
143032	TP40 1.00	09/07/2018	12/07/2018	Silty loam	
143033	TP41 0.50	11/07/2018	12/07/2018		
143034	TP41 1.50	11/07/2018	12/07/2018	Silty loam	
143035	TP42/HP 0.10	10/07/2018	12/07/2018		
143036	TP42/HP 0.50	10/07/2018	12/07/2018		
143037	TP42/HP 0.90	10/07/2018	12/07/2018		
143038	TP43 0.50	11/07/2018	12/07/2018	Silty loam	
143039	TP43 1.20	11/07/2018	12/07/2018	Sandy silty loam	
143040	TP43 1.90	11/07/2018	12/07/2018	Sandy silty loam	
143041	TP44/HP 0.20	10/07/2018	12/07/2018		
143042	TP44/HP 0.70	10/07/2018	12/07/2018		
143043	TP45 0.10	10/07/2018	12/07/2018	Silty loam	
143044	TP45 0.50	10/07/2018	12/07/2018		
143045	TP45 1.50	10/07/2018	12/07/2018		
143046	TP46 0.30	09/07/2018	12/07/2018	Silty loam	
143047	TP46 0.90	09/07/2018	12/07/2018	Silty loam	
143048	TP46 1.50	09/07/2018	12/07/2018		
143049	TP46 3.00	09/07/2018	12/07/2018	Silty loam	
143050	TP47 0.05	10/07/2018	12/07/2018	Silty loam	
143051	TP47 0.50	10/07/2018	12/07/2018	Silty loam	
143052	TP47 1.50	10/07/2018	12/07/2018		
143053	TP47 2.70	10/07/2018	12/07/2018	Silty loam	
143054	TP48 0.50	10/07/2018	12/07/2018		
143055	TP48 1.50	10/07/2018	12/07/2018	Silty loam	
143056	TP48 2.10	10/07/2018	12/07/2018		
143057	TP48 2.50	10/07/2018	12/07/2018	Silty clayey loam	
143058	TP49 0.40	10/07/2018	12/07/2018	Silty loam	
143059	TP49 1.50	10/07/2018	12/07/2018	Sandy silty loam	
143060	TP49 2.50	10/07/2018	12/07/2018	Sandy silty loam	
143061	TP50 0.20	10/07/2018	12/07/2018		
143062	TP50 0.60	10/07/2018	12/07/2018		
143063	TP50 1.20	10/07/2018	12/07/2018	Silty loam	
143102	HP07A 0.05	12/07/2018	12/07/2018	Silty loam	
143103	HP07B 0.10	12/07/2018	12/07/2018	Silty loam	

Report No.: 18-18532												
	ELAB Reference					142885	142888	142892	142893	142895	142898	142900
	(Customer	Reference									
			Sample ID									
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	WS01	WS01	WS01	WS01	WS02	WS02	WS03	WS03	WS04
		Sample	Depth (m)	0.10	0.50	1.50	4.50	2.70	3.70	0.20	2.50	0.50
		Sam	pling Date	09/07/2018	09/07/2018	09/07/2018	09/07/2018	10/07/2018	10/07/2018	09/07/2018	09/07/2018	09/07/2018
Determinand	Codes	Units	LOD									
Metals												
Arsenic	М	mg/kg	1	10.4	n/t	1.5	6.4	15.0	n/t	16.5	6.8	^ 5.6
Barium	U	mg/kg	10	57.9	n/t	13.6	< 10.0	207	n/t	191	54.8	67.0
Beryllium	U	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	< 1.0	n/t	1.2	< 1.0	< 1.0
Cadmium	M	mg/kg	0.5	< 0.5	n/t	< 0.5	< 0.5	0.6	n/t	0.5	< 0.5	^ 0.5
Chromium	M	mg/kg	5	16.4	n/t	7.2	5.7	30.3	n/t	28.4	11.4	^ 8.9
Copper	M	mg/kg	5	13.7	n/t	< 5.0	< 5.0	244	n/t	36.7	10.8	^ 13.1
Wester askuble magnesium	M	mg/kg	5	23.0	n/t	< 5.0	< 5.0	232	n/t	185	13.9	^ 147
Water soluble magnesium Mercury	M	g/l mg/kg	0.01	n/t < 0.5	< 0.01 n/t	n/t < 0.5	n/t < 0.5	n/t < 0.5	n/t n/t	n/t < 0.5	n/t < 0.5	< 0.01 ^ < 0.5
Nickel	M	mg/kg	5	11.0	n/t	6.4	< 5.0	19.0	n/t	17.5	16.7	^ 9.7
Selenium	M	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	< 1.0	n/t	< 1.0	< 1.0	^ < 1.0
Vanadium	M	mg/kg	5	19.8	n/t	5.4	< 5.0	39.5	n/t	42.1	14.1	^ 19.8
Zinc	M	mg/kg	5	52.1	n/t	28.4	17.9	163	n/t	167	45.2	^ 60.4
Anions												
Water Soluble Chloride	М	mg/l	20	n/t	^ < 20	n/t	n/t	n/t	n/t	n/t	n/t	^ 429
Water Soluble Chloride	M	mg/kg	40	< 40	n/t	< 40	< 40	< 40	n/t	< 40	113	^ 690
Water Soluble Nitrate	М	mg/l	20	n/t	^ < 20	n/t	n/t	n/t	n/t	n/t	n/t	^ 42
Water Soluble Sulphate	М	g/l	0.02	< 0.02	^ < 0.02	< 0.02	< 0.02	0.41	n/t	0.06	0.03	^ 0.17
Inorganics												
Complex Cyanide	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	< 1.0	n/t	n/t	n/t
Elemental Sulphur	М	mg/kg	20	< 20	n/t	< 20	< 20	934	n/t	< 20	< 20	^ 373
Free Cyanide	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	< 1.0	n/t	n/t	n/t
Ammoniacal Nitrogen as N	N	mg/kg	0.1	n/t	n/t	n/t	n/t	n/t	31.0	n/t	n/t	n/t
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	n/t	< 0.8	< 0.8	< 0.8	n/t	< 0.8	< 0.8	< 0.8
Total Sulphide	N	mg/kg	2	< 2	n/t	< 2	< 2	17	n/t	< 2	< 2	47
Total Cyanide	M	mg/kg	1	2.5	n/t	2.6	< 1.0	4.1	< 1.0	< 1.0	< 1.0	^ < 1.0
Total Sulphur	N	%	0.01	n/t	< 0.01	n/t	n/t	n/t	n/t	n/t	n/t	0.09
Acid Soluble Sulphate (SO4) Water Soluble Boron	U N	% mg/kg	0.02	0.08 < 0.5	0.06 n/t	0.05 < 0.5	0.05 < 0.5	0.18 0.5	n/t n/t	0.14 < 0.5	0.06 < 0.5	0.10
	I IN	mg/kg	0.5	< 0.5	11/1	< 0.5	< 0.5	0.5	11/1	< 0.5	< 0.5	0.6
Miscellaneous												
pH	M	pH units	0.1	5.5	^ 6.3	6.6	3.9	8.2	n/t	9.1	6.7	^ 8.3
Total Organic Carbon	N	%	0.01	0.97	n/t	0.04	0.09	1.9	n/t	1.8	0.28	0.57
Phenols												
Total Phenols	N	mg/kg	6	< 6	n/t	< 6	< 6	< 6	n/t	< 6	< 6	< 6
Polyaromatic hydrocarbon	S											
Naphthalene	М	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	0.5	n/t	0.3	< 0.1	^ 3.8
Acenaphthylene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	3.8	n/t	1.9	< 0.1	^ 0.2
Acenaphthene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	2.6	n/t	1.5	< 0.1	^ 3.6
Fluorene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	5.2	n/t	1.8	< 0.1	^ 3.1
Phenanthrene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	44.0	n/t	30.1	< 0.1	^ 14.3
Anthracene Fluoranthene	M	mg/kg mg/kg	0.1	< 0.1 < 0.1	n/t n/t	< 0.1 < 0.1	< 0.1 < 0.1	9.4 55.4	n/t n/t	9.0 66.3	< 0.1 < 0.1	^ 2.9 ^ 14.3
Pyrene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	40.5	n/t	51.0	< 0.1	^ 12.7
Benzo(a)anthracene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	22.1	n/t	30.1	< 0.1	^ 4.8
Chrysene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	20.1	n/t	29.5	< 0.1	^ 5.9
Benzo (b) fluoranthene	M	mg/kg	0.1	0.2	n/t	< 0.1	0.2	16.7	n/t	28.0	0.2	^ 5.5
Benzo(k)fluoranthene	М	mg/kg	0.1	0.1	n/t	< 0.1	< 0.1	15.9	n/t	25.1	0.4	^ 5.6
Benzo (a) pyrene	М	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	17.3	n/t	26.8	0.1	^ 5.8
Indeno (1,2,3-cd) pyrene	М	mg/kg	0.1	0.3	n/t	0.3	0.4	9.2	n/t	19.8	< 0.1	^ 3.9
Dibenzo(a,h)anthracene	M	mg/kg	0.1	< 0.1	n/t	< 0.1	< 0.1	2.1	n/t	5.1	< 0.1	^ 1.3
Benzo[g,h,i]perylene	M	mg/kg	0.1	0.1	n/t	< 0.1	< 0.1	9.5	n/t	18.3	< 0.1	^ 3.8
Coronene	N	mg/kg	0.1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Total PAH(16) Total PAH(16) + Coronene	M N	mg/kg mg/kg	0.4	1.2 n/t	n/t n/t	0.6 n/t	0.7 n/t	274 n/t	n/t n/t	345 n/t	1.0 n/t	^ 91.7 n/t
Total FALI(10) + Colonelle	IN	my/kg	0.4	11/1	11/1	11/1	11/1	11/1	11/1	11/1	11/1	11/1

Results Summary Report No.: 18-18532

Report No.: 18-18532												
	ELAB Reference				142884	142885	142888	142892	142893	142895	142898	142900
	C	Customer	Reference									
			Sample ID									
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	WS01	WS01	WS01	WS01	WS02	WS02	WS03	WS03	WS04
			Depth (m)	0.10	0.50	1.50	4.50	2.70	3.70	0.20	2.50	0.50
			pling Date	09/07/2018	09/07/2018	09/07/2018	09/07/2018	10/07/2018	10/07/2018	09/07/2018	09/07/2018	09/07/2018
Determinand	Codes	Units	LOD									
BTEX												
Benzene	M	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	< 10.0	n/t	< 10.0	< 10.0	^ < 10.0
Toluene	М	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	< 10.0	n/t	< 10.0	< 10.0	^ < 10.0
Ethylbenzene	M	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	< 10.0	n/t	< 10.0	< 10.0	^ < 10.0
Xylenes	M	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	< 10.0	n/t	< 10.0	< 10.0	^ < 10.0
TPH CWG												
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	< 1.0	n/t	< 1.0	< 1.0	< 1.0
>C10-C12 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	2.0	n/t	< 1.0	< 1.0	< 1.0
>C12-C16 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	15.4	n/t	3.4	< 1.0	4.1
>C16-C21 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	21.8	n/t	20.5	< 1.0	7.7
>C21-C35 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	137	n/t	174	< 1.0	34.6
>C35-C40 Aliphatic	N	mg/kg	1	< 1.0	n/t	1.2	< 1.0	59.8	n/t	56.7	< 1.0	12.3
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01
>C7-C8 Aromatic	N N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01
>C8-C10 Aromatic >C10-C12 Aromatic	N	mg/kg	1	< 1.0 < 1.0	n/t n/t	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 1.4	n/t n/t	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 1.6
>C12-C16 Aromatic	N	mg/kg mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	21.8	n/t	6.3	< 1.0	6.7
>C16-C21 Aromatic	N	mg/kg	1	1.9	n/t	< 1.0	< 1.0	45.1	n/t	57.5	< 1.0	20.8
>C21-C35 Aromatic	N	mg/kg	1	6.0	n/t	< 1.0	< 1.0	208	n/t	513	< 1.0	71.5
>C35-C40 Aromatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	86.2	n/t	121	< 1.0	16.2
Total (>C5-C40) Ali/Aro	N	mg/kg	1	7.9	n/t	1.2	< 1.0	599	n/t	952	< 1.0	176
OrganoChlorine Pesticides	3	0 0										
alpha-HCH	М	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
beta HCH	М	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
gamma-HCH	М	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
delta-HCH	N	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Heptachlor	N	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Aldrin	М	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Heptachlor expoxide	N	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
trans-Chlordane	N	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
alpha cis-Chlordane	N	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
p,p-DDE	M	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Dieldrin	M	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Endrin	N M	ug/kg	10 10	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t
p,p-DDD Endosulfan II	N	ug/kg ug/kg	10	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t
Endosulian II Endrin aldehyde	N	ug/kg ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
p,p-DDT	M	ug/kg ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Endosulphan sulphate	M	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Methoxychlor	N	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Endrin ketone	N	ug/kg	10	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
		33	-									

Report No.: 18-18532												
		ELAB	Reference	142902	142904	142906	142909	142910	142913	142917	142920	142922
	(Customer	Reference									
			Sample ID									
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	WS04	WS04	WS05	WS05	WS06	WS06	WS07	WS08	WS08
			Depth (m)	2.50	4.50	1.50	4.50	0.20	2.70	0.50	0.30	2.00
	1			09/07/2018	09/07/2018	05/07/2018	05/07/2018	10/07/2018	10/07/2018	09/07/2018	05/07/2018	05/07/2018
Determinand	Codes	Units	LOD									
Metals												
Arsenic	M	mg/kg	1	19.7	30.4	21.2	21.8	11.4	6.1	4.5	12.0	14.5
Barium	U	mg/kg	10	256	223	124	219	622	41.5	15.2	138	190
Beryllium Cadmium	U M	mg/kg	1 0.5	1.4 0.8	1.1 < 0.5	1.1 0.6	< 1.0 < 0.5	1.4 < 0.5	< 1.0 < 0.5	< 1.0 < 0.5	< 1.0 < 0.5	1.1 < 0.5
Chromium	M	mg/kg mg/kg	5	29.5	37.6	25.8	30.6	25.1	11.8	9.9	25.8	21.6
Copper	M	mg/kg	5	87.4	47.9	27.9	33.4	23.1	9.6	6.6	29.4	35.7
Lead	M	mg/kg	5	788	402	100	142	62.5	30.3	9.5	120	287
Water soluble magnesium	N	g/l	0.01	n/t	n/t	< 0.01	n/t	n/t	n/t	n/t	n/t	n/t
Mercury	М	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel	М	mg/kg	5	26.5	22.2	23.2	16.6	16.4	6.4	5.7	18.8	14.7
Selenium	М	mg/kg	1	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium	M	mg/kg	5	44.8	53.5	30.0	51.1	31.4	12.5	7.3	36.5	31.6
Zinc	M	mg/kg	5	423	181	132	153	102	33.3	30.5	136	151
Anions												
Water Soluble Chloride	М	mg/l	20	n/t	n/t	< 20	n/t	n/t	n/t	n/t	n/t	n/t
Water Soluble Chloride	M	mg/kg	40	163	53	< 40	< 40	< 40	< 40	< 40	< 40	< 40
Water Soluble Nitrate	M	mg/l	20	n/t	n/t	< 20	n/t	n/t	n/t	n/t	n/t	n/t
Water Soluble Sulphate	M	g/l	0.02	0.24	0.25	0.16	0.14	0.08	0.06	0.02	0.14	0.18
Inorganics												
Complex Cyanide	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Elemental Sulphur	M	mg/kg	20	1810	< 20	456	270	< 20	438	< 20	56	732
Free Cyanide Ammoniacal Nitrogen as N	N N	mg/kg mg/kg	0.1	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t 17.3	n/t n/t	n/t n/t	n/t n/t
Hexavalent Chromium	N	mg/kg	0.1	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Total Sulphide	N	mg/kg	2	7	47	26	15	< 2	< 2	< 2	4	76
Total Cyanide	М	mg/kg	1	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.6
Total Sulphur	N	%	0.01	n/t	n/t	0.11	n/t	n/t	n/t	n/t	n/t	n/t
Acid Soluble Sulphate (SO4)	U	%	0.02	0.23	0.28	0.13	0.09	0.16	0.09	0.06	0.16	0.16
Water Soluble Boron	N	mg/kg	0.5	< 0.5	1.9	0.7	1.2	0.6	1.6	< 0.5	1.4	1.3
Miscellaneous												
pH	M	pH units	0.1	8.9	9.1	8.5	8.3	9.5	8.6	7.8	8.0	8.2
Total Organic Carbon	N	%	0.01	1.2	0.86	0.91	2.3	2.5	0.27	0.04	1.3	1.6
Phenois												
Total Phenols	N	mg/kg	6	< 6	13	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Polyaromatic hydrocarbon	s											
Naphthalene	М	mg/kg	0.1	0.1	1.3	< 0.1	0.4	< 0.1	< 0.1	< 0.1	< 0.1	0.3
Acenaphthylene	М	mg/kg	0.1	0.2	0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.1
Acenaphthene	М	mg/kg	0.1	0.4	2.3	0.3	1.3	< 0.1	< 0.1	< 0.1	< 0.1	1.6
Fluorene	М	mg/kg	0.1	0.6	1.7	0.4	1.1	< 0.1	< 0.1	< 0.1	< 0.1	1.2
Phenanthrene	M	mg/kg	0.1	4.4	3.9	0.5	7.9	0.7	0.3	< 0.1	1.2	3.1
Anthracene	M	mg/kg	0.1	1.5	0.5	0.3	1.4	0.2	< 0.1	< 0.1	0.5	0.5
Fluoranthene	M	mg/kg	0.1	7.5 6.2	3.5	2.2 1.8	7.8	2.0 1.6	0.5	< 0.1 < 0.1	4.6 4.8	3.1 2.3
Pyrene Benzo(a)anthracene	M	mg/kg mg/kg	0.1	3.1	2.8 1.5	1.8	6.2 2.3	1.0	0.4	< 0.1	2.8	1.3
Chrysene	M	mg/kg	0.1	3.5	1.5	1.0	2.8	1.1	0.2	< 0.1	3.2	1.3
Benzo (b) fluoranthene	M	mg/kg	0.1	3.2	1.3	0.9	2.3	1.1	0.3	< 0.1	4.8	1.0
Benzo(k)fluoranthene	М	mg/kg	0.1	3.3	1.4	0.9	2.0	1.1	0.2	< 0.1	4.3	1.0
Benzo (a) pyrene	М	mg/kg	0.1	3.5	1.5	0.8	2.2	1.1	0.3	< 0.1	4.4	1.1
Indeno (1,2,3-cd) pyrene	М	mg/kg	0.1	2.5	1.3	0.5	1.4	0.8	0.2	0.2	3.2	0.8
Dibenzo(a,h)anthracene	M	mg/kg	0.1	0.7	0.3	< 0.1	0.3	0.2	< 0.1	0.1	0.8	0.2
Benzo[g,h,i]perylene	M	mg/kg	0.1	2.2	1.3	0.4	1.6	0.8	0.3	< 0.1	3.1	0.7
Coronene	N	mg/kg	0.1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Total PAH(16)	M	mg/kg	0.4	42.7	26.7	11.2	41.1	11.9	3.2	0.7	37.9	19.7
Total PAH(16) + Coronene	N	mg/kg	0.4	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t

Report No.: 18-18532												
	ELAB Reference				142904	142906	142909	142910	142913	142917	142920	142922
	C	Customer	Reference									
			Sample ID									
			mple Type	SOIL								
			e Location	WS04	WS04	WS05	WS05	WS06	WS06	WS07	WS08	WS08
			Depth (m)	2.50	4.50	1.50	4.50	0.20	2.70	0.50	0.30	2.00
		Sam	pling Date	09/07/2018	09/07/2018	05/07/2018	05/07/2018	10/07/2018	10/07/2018	09/07/2018	05/07/2018	05/07/2018
Determinand	Codes	Units	LOD									
BTEX												
Benzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Toluene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Ethylbenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Xylenes	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
TPH CWG												
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C10-C12 Aliphatic	N	mg/kg	1	< 1.0	2.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.4
>C12-C16 Aliphatic	N	mg/kg	1	2.8	20.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	5.4
>C16-C21 Aliphatic	N	mg/kg	1	3.6	39.6	< 1.0	< 1.0	1.6	< 1.0	< 1.0	2.3	6.9
>C21-C35 Aliphatic	N	mg/kg	1	19.1	185	4.7	1.6	16.3	10.2	3.7	21.0	32.9
>C35-C40 Aliphatic	N	mg/kg	1	7.0	41.1	3.6	1.7	7.6	3.0	< 1.0	8.6	11.6
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C10-C12 Aromatic	N	mg/kg	1	< 1.0	2.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C12-C16 Aromatic	N	mg/kg	1	4.8	21.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	5.8
>C16-C21 Aromatic	N	mg/kg	1	7.0	40.8	3.3	< 1.0	5.5	1.6	< 1.0	3.7	9.7
>C21-C35 Aromatic	N	mg/kg	1	25.7	174	8.6	< 1.0	73.8	13.1	2.9	51.4	37.6
>C35-C40 Aromatic	N	mg/kg	1	5.3	48.2	2.3	< 1.0	29.7	2.5	< 1.0	17.4	11.3
Total (>C5-C40) Ali/Aro	N	mg/kg	1	75.3	576	22.5	3.3	135	30.3	6.6	105	123
OrganoChlorine Pesticide	S											
alpha-HCH	M	ug/kg	10	n/t								
beta_HCH	M	ug/kg	10	n/t								
gamma-HCH	M	ug/kg	10	n/t								
delta-HCH	N	ug/kg	10	n/t								
Heptachlor	N	ug/kg	10	n/t								
Aldrin	M	ug/kg	10	n/t								
Heptachlor expoxide	N	ug/kg	10	n/t								
trans-Chlordane	N N	ug/kg	10 10	n/t n/t								
p,p-DDE	M	ug/kg ug/kg	10	n/t n/t								
Dieldrin	M		10	n/t n/t								
Endrin	N	ug/kg ug/kg	10	n/t								
p,p-DDD	M	ug/kg ug/kg	10	n/t								
Endosulfan II	N	ug/kg ug/kg	10	n/t								
Endrin aldehyde	N	ug/kg ug/kg	10	n/t								
p,p-DDT	M	ug/kg ug/kg	10	n/t								
P =	1 171					n/t						
Endosulphan sulphate	M	ua/ka	10	n/t	n/t	1 11/L	1 11/1				I II/L	
Endosulphan sulphate Methoxychlor	M	ug/kg ug/kg	10	n/t n/t	n/t n/t	n/t						

Report No.: 18-18532												
•		ELAB	Reference	142924	142925	142927	142929	142930	142932	142934	142935	142936
	(Customer	Reference									
			Sample ID									
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					WS09	WS09	WS09	WS10	WS11	WS11	WS11	WS11
			e Location	WS08								
			Depth (m)	4.50	0.20	1.50	3.50	0.30	0.60	2.60	3.60	4.60
	_	Sam	pling Date	05/07/2018	05/07/2018	05/07/2018	05/07/2018	05/07/2018	10/07/2018	10/07/2018	10/07/2018	10/07/2018
Determinand	Codes	Units	LOD									
Metals												
Arsenic	M	mg/kg	1	10.3	n/t	10.8	7.6	n/t	13.1	7.4	n/t	4.5
Barium	U	mg/kg	10	203	n/t	262	86.3	n/t	162	381	n/t	23.0
Beryllium	U	mg/kg	1	2.6	n/t	1.5	< 1.0	n/t	1.7	< 1.0	n/t	< 1.0
Cadmium Chromium	M	mg/kg mg/kg	0.5 5	< 0.5 42.2	n/t n/t	< 0.5 27.4	< 0.5 15.8	n/t n/t	< 0.5 36.0	< 0.5 15.2	n/t n/t	< 0.5 9.6
Copper	M	mg/kg	5	31.3	n/t	52.8	22.9	n/t	36.9	127	n/t	8.2
Lead	M	mg/kg	5	30.0	n/t	124	126	n/t	79.0	39.5	n/t	23.6
Water soluble magnesium	N	g/l	0.01	n/t	< 0.01	n/t	n/t	n/t	< 0.01	n/t	n/t	n/t
Mercury	М	mg/kg	0.5	< 0.5	n/t	< 0.5	< 0.5	n/t	< 0.5	< 0.5	n/t	< 0.5
Nickel	М	mg/kg	5	54.0	n/t	16.6	12.7	n/t	32.2	27.8	n/t	< 5.0
Selenium	M	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	n/t	< 1.0	< 1.0	n/t	< 1.0
Vanadium	M	mg/kg	5	49.8	n/t	37.8	26.7	n/t	47.2	14.3	n/t	11.8
Zinc	M	mg/kg	5	116	n/t	147	117	n/t	111	112	n/t	18.3
Anions	1											
Water Soluble Chloride Water Soluble Chloride	M	mg/l	20 40	n/t < 40	< 20 n/t	n/t < 40	n/t < 40	n/t n/t	33 43	n/t 58	n/t	n/t < 40
Water Soluble Chloride Water Soluble Nitrate	M	mg/kg mg/l	20	n/t	< 20	n/t	n/t	n/t	24	n/t	n/t n/t	n/t
Water Soluble Sulphate	M	g/l	0.02	0.02	< 0.02	0.14	0.10	n/t	0.23	0.03	n/t	0.02
Inorganics		9,.	0.02	0.02	10.02	0	0.10	.,,,	0.20	0.00	.,,,	0.02
Complex Cyanide	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Elemental Sulphur	M	mg/kg	20	23	n/t	424	198	n/t	35	< 20	n/t	< 20
Free Cyanide	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Ammoniacal Nitrogen as N	N	mg/kg	0.1	n/t	n/t	n/t	n/t	2.3	n/t	n/t	104	n/t
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	n/t	< 0.8	< 0.8	n/t	< 0.8	< 0.8	n/t	< 0.8
Total Sulphide	N	mg/kg	2	< 2	n/t	20	< 2	n/t	< 2	< 2	n/t	< 2
Total Cyanide	M	mg/kg	1	1.9	n/t	< 1.0	< 1.0	n/t	1.1	< 1.0	n/t	< 1.0
Total Sulphur Acid Soluble Sulphate (SO4)	N U	%	0.01	n/t 0.08	0.02	n/t 0.10	n/t 0.13	n/t n/t	0.07 0.12	n/t 0.15	n/t n/t	n/t 0.06
Water Soluble Boron	N	mg/kg	0.02	< 0.5	n/t	1.5	0.13	n/t	0.12	1.0	n/t	0.06
Miscellaneous	1	g/g	0.0	1 0.0	.,,,	1.0	0.0	.,,,	0.0	1.0	.,,,	0.0
pH	М	pH units	0.1	7.5	7.9	9.0	9.1	n/t	9.9	8.4	n/t	6.3
Total Organic Carbon	N	%	0.01	0.26	n/t	2.3	1.3	n/t	0.87	0.38	n/t	1.3
Phenois	1	,,,	0.01	0.20	.,,,	2.0	1.0		0.01	0.00	.,,,	
Total Phenois	N	mg/kg	6	< 6	n/t	< 6	< 6	n/t	< 6	< 6	n/t	< 6
Polyaromatic hydrocarbon		ing/kg	<u> </u>	\	11/1	_ ` `	_ ` ' '	1//1	_ ` 0	_ ` ` `	1//1	_ \ 0
Naphthalene	IS М	ma/ka	0.1	< 0.1	n/t	0.6	0.6	n/t	10.0	< 0.1	n/t	< 0.1
Acenaphthylene	M	mg/kg mg/kg	0.1	< 0.1	n/t n/t	0.6	1.3	n/t n/t	2.5	< 0.1	n/t n/t	< 0.1
Acenaphthene	M	mg/kg	0.1	< 0.1	n/t	1.9	8.1	n/t	5.9	< 0.1	n/t	< 0.1
Fluorene	M	mg/kg	0.1	< 0.1	n/t	2.2	7.6	n/t	6.7	< 0.1	n/t	< 0.1
Phenanthrene	М	mg/kg	0.1	< 0.1	n/t	14.6	49.4	n/t	56.0	0.3	n/t	< 0.1
Anthracene	М	mg/kg	0.1	< 0.1	n/t	4.3	14.0	n/t	13.3	< 0.1	n/t	< 0.1
Fluoranthene	M	mg/kg	0.1	< 0.1	n/t	27.4	74.2	n/t	53.9	0.9	n/t	0.2
Pyrene Penze(a)anthrocone	M	mg/kg	0.1	< 0.1	n/t	23.5	57.5	n/t	41.2	0.9	n/t	< 0.1
Benzo(a)anthracene Chrysene	M	mg/kg mg/kg	0.1	< 0.1 < 0.1	n/t n/t	12.0 12.4	28.6 30.0	n/t n/t	20.5 21.2	0.5	n/t n/t	< 0.1 < 0.1
Benzo (b) fluoranthene	M	mg/kg	0.1	< 0.1	n/t	13.6	31.5	n/t	20.7	0.6	n/t	< 0.1
Benzo(k)fluoranthene	M	mg/kg	0.1	0.2	n/t	12.4	26.1	n/t	19.5	0.6	n/t	< 0.1
Benzo (a) pyrene	М	mg/kg	0.1	< 0.1	n/t	13.3	28.7	n/t	21.6	0.7	n/t	< 0.1
Indeno (1,2,3-cd) pyrene	М	mg/kg	0.1	< 0.1	n/t	8.0	18.0	n/t	11.9	0.8	n/t	< 0.1
Dibenzo(a,h)anthracene	М	mg/kg	0.1	< 0.1	n/t	1.7	3.6	n/t	3.0	0.3	n/t	< 0.1
Benzo[g,h,i]perylene	M	mg/kg	0.1	< 0.1	n/t	8.1	17.3	n/t	12.7	0.6	n/t	< 0.1
Coronene Total PAH(16)	N M	mg/kg mg/kg	0.1	n/t < 0.4	n/t n/t	n/t 157	n/t 397	n/t n/t	n/t 321	n/t 6.9	n/t n/t	n/t < 0.4
Total PAH(16) + Coronene	N	mg/kg	0.4	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	< 0.4 n/t
TOTAL TALICIO) + COLUMENE	IN	ing/kg	0.4	11/1	11/1	11/1	11/1	11// L	11/1	11/1	1#1	11/1

Report No.: 18-18532												
		ELAB	Reference	142924	142925	142927	142929	142930	142932	142934	142935	142936
	C	Customer	Reference									
			Sample ID									
			mple Type	SOIL								
			e Location	WS08	WS09	WS09	WS09	WS10	WS11	WS11	WS11	WS11
		Sample	Depth (m)	4.50	0.20	1.50	3.50	0.30	0.60	2.60	3.60	4.60
		Sam	pling Date	05/07/2018	05/07/2018	05/07/2018	05/07/2018	05/07/2018	10/07/2018	10/07/2018	10/07/2018	10/07/2018
Determinand	Codes	Units	LOD									
BTEX												
Benzene	М	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0
Toluene	M	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0	< 10.0	n/t	305
Ethylbenzene	М	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0
Xylenes	М	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0
TPH CWG												
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	n/t	1.2	< 1.0	n/t	< 1.0
>C10-C12 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	3.8	n/t	4.9	< 1.0	n/t	< 1.0
>C12-C16 Aliphatic	N	mg/kg	1	< 1.0	n/t	7.9	54.8	n/t	23.8	< 1.0	n/t	< 1.0
>C16-C21 Aliphatic	N	mg/kg	1	< 1.0	n/t	27.2	120	n/t	55.3	< 1.0	n/t	< 1.0
>C21-C35 Aliphatic	N	mg/kg	1	< 1.0	n/t	322	323	n/t	182	2.5	n/t	< 1.0
>C35-C40 Aliphatic	N	mg/kg	1	< 1.0	n/t	139	188	n/t	78.9	< 1.0	n/t	< 1.0
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	0.31
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	n/t	< 1.0	< 1.0	n/t	< 1.0
>C10-C12 Aromatic	N	mg/kg	1	< 1.0	n/t	1.2	3.5	n/t	12.3	< 1.0	n/t	< 1.0
>C12-C16 Aromatic	N	mg/kg	11	< 1.0	n/t	18.8	71.2	n/t	44.4	< 1.0	n/t	< 1.0
>C16-C21 Aromatic	N	mg/kg	1	< 1.0	n/t	70.1	182	n/t	134	< 1.0	n/t	< 1.0
>C21-C35 Aromatic	N	mg/kg	1	< 1.0	n/t	468	477	n/t	367	6.0	n/t	< 1.0
>C35-C40 Aromatic	N	mg/kg	1	< 1.0	n/t	188	255	n/t	138	< 1.0	n/t	< 1.0
Total (>C5-C40) Ali/Aro	N	mg/kg	1	< 1.0	n/t	1240	1680	n/t	1040	8.5	n/t	< 1.0
OrganoChlorine Pesticides												
alpha-HCH	M	ug/kg	10	n/t								
beta_HCH	M	ug/kg	10	n/t								
gamma-HCH	M	ug/kg	10	n/t								
delta-HCH	N	ug/kg	10	n/t								
Heptachlor	N	ug/kg	10 10	n/t								
Aldrin Heptachlor expoxide	M N	ug/kg	10	n/t n/t								
trans-Chlordane	N	ug/kg ug/kg	10	n/t								
alpha cis-Chlordane	N	ug/kg ug/kg	10	n/t								
p,p-DDE	M	ug/kg ug/kg	10	n/t								
Dieldrin	M	ug/kg	10	n/t								
Endrin	N	ug/kg	10	n/t								
p,p-DDD	M	ug/kg	10	n/t								
Endosulfan II	N	ug/kg	10	n/t								
Endrin aldehyde	N	ug/kg	10	n/t								
p,p-DDT	M	ug/kg	10	n/t								
Endosulphan sulphate	M	ug/kg	10	n/t								
Methoxychlor	N	ug/kg	10	n/t								
Endrin ketone	N	ug/kg	10	n/t								

Report No.: 18-18532												
		ELAB	Reference	142937	142940	142941	142944	142947	142951	142967	142971	142975
	(Customer	Reference									
			Sample ID									
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	WS12	WS12	WS12	TP01	TP03	TP05	TP12	TP14	TP17/HP
			Depth (m)	0.20	2.80	3.80	0.70	0.10	0.50	0.80	0.70	0.20
				10/07/2018	10/07/2018	10/07/2018	06/07/2018	05/07/2018	06/07/2018	05/07/2018	05/07/2018	09/07/2018
Determinand	Codes	Units	LOD									
Metals												
Arsenic	M	mg/kg	1	14.2	n/t	25.9	n/t	11.6	12.7	4.2	10.4	n/t
Barium Beryllium	U	mg/kg mg/kg	10 1	137 1.1	n/t n/t	473 2.5	n/t n/t	67.9 < 1.0	173 < 1.0	31.0 < 1.0	117 < 1.0	n/t n/t
Cadmium	M	mg/kg	0.5	< 0.5	n/t	1.7	n/t	< 0.5	1.1	< 0.5	< 0.5	n/t
Chromium	M	mg/kg	5	32.5	n/t	42.0	n/t	20.7	21.7	10.4	21.4	n/t
Copper	М	mg/kg	5	26.9	n/t	167	n/t	16.9	168	9.7	24.8	n/t
Lead	М	mg/kg	5	112	n/t	504	n/t	38.6	341	14.6	84.5	n/t
Water soluble magnesium	N	g/l	0.01	n/t	0.02	< 0.01	< 0.01	n/t	n/t	n/t	n/t	n/t
Mercury	М	mg/kg	0.5	< 0.5	n/t	0.9	n/t	< 0.5	< 0.5	< 0.5	< 0.5	n/t
Nickel	M	mg/kg	5	24.1	n/t	45.3	n/t	14.8	15.1	6.1	14.8	n/t
Selenium Vanadium	M M	mg/kg	1 5	< 1.0 44.2	n/t n/t	< 1.0 57.7	n/t n/t	< 1.0 24.2	< 1.0 25.3	< 1.0 12.0	< 1.0 31.0	n/t n/t
Zinc	M	mg/kg mg/kg	5	115	n/t n/t	57.7	n/t n/t	64.5	25.3	22.4	80.5	n/t n/t
Anions	IVI	i iiig/kg		113	11/1	JJ 1	11/1	04.0	233	22.4	50.5	11/1
		//	00	/4	00	04	00	/4	/4	/4	/4	/4
Water Soluble Chloride Water Soluble Chloride	M M	mg/l mg/kg	20 40	n/t < 40	< 20 n/t	21 < 40	< 20 n/t	n/t < 40	n/t < 40	n/t < 40	n/t 137	n/t n/t
Water Soluble Chloride Water Soluble Nitrate	M	mg/l	20	n/t	31	27	< 20	n/t	n/t	n/t	n/t	n/t
Water Soluble Sulphate	M	g/l	0.02	0.04	0.91	0.22	< 0.02	0.03	0.57	0.03	0.12	n/t
-	norganics											
Complex Cyanide	N	mg/kg	1	n/t	n/t	8.1	n/t	n/t	n/t	n/t	< 1.0	n/t
Elemental Sulphur	M	mg/kg	20	< 20	n/t	630	n/t	< 20	< 20	< 20	32	n/t
Free Cyanide	N	mg/kg	1	n/t	n/t	< 1.0	n/t	n/t	n/t	n/t	< 1.0	n/t
Ammoniacal Nitrogen as N	N	mg/kg	0.1	n/t	n/t	137	n/t	n/t	n/t	n/t	2.2	n/t
Hexavalent Chromium	N	mg/kg	8.0	< 0.8	n/t	< 0.8	n/t	< 0.8	< 0.8	< 0.8	< 0.8	n/t
Total Sulphide	N	mg/kg	2	< 2	n/t	18	n/t	< 2	< 2	< 2	4	n/t
Total Cyanide	M	mg/kg	1	< 1.0	n/t	8.1	n/t	< 1.0	< 1.0	< 1.0	< 1.0	n/t
Total Sulphur Acid Soluble Sulphate (SO4)	N U	%	0.01	n/t 0.10	0.34	0.26 0.14	0.01	n/t 0.07	n/t 0.23	n/t 0.08	n/t 0.19	n/t n/t
Water Soluble Boron	N	mg/kg	0.02	< 0.5	n/t	2.8	n/t	< 0.5	< 0.5	< 0.5	< 0.19	n/t
Miscellaneous		1119/119	0.0	1 0.0			.,,,	1 0.0	1 0.0	1 0.0	1 0.0	
pH	М	pH units	0.1	8.3	8.2	8.2	6.8	5.5	7.1	6.2	11.1	n/t
Total Organic Carbon	N	%	0.01	1.5	n/t	6.0	n/t	1.1	1.5	0.21	1.3	n/t
Phenois					,,	***	<u> </u>				1	
Total Phenois	N	mg/kg	6	< 6	n/t	< 6	n/t	< 6	< 6	< 6	8	n/t
Polyaromatic hydrocarbon				1.0		- 10	.,,					
Naphthalene	M	mg/kg	0.1	< 0.1	n/t	0.2	n/t	< 0.1	< 0.1	< 0.1	1.9	n/t
Acenaphthylene	M	mg/kg	0.1	0.1	n/t	0.2	n/t	< 0.1	0.1	< 0.1	3.9	n/t
Acenaphthene	M	mg/kg	0.1	< 0.1	n/t	0.6	n/t	< 0.1	< 0.1	< 0.1	6.4	n/t
Fluorene	М	mg/kg	0.1	< 0.1	n/t	0.5	n/t	< 0.1	< 0.1	< 0.1	6.4	n/t
Phenanthrene	М	mg/kg	0.1	0.4	n/t	3.3	n/t	< 0.1	0.4	< 0.1	23.4	n/t
Anthracene	M	mg/kg	0.1	0.1	n/t	0.9	n/t	< 0.1	0.2	< 0.1	7.4	n/t
Fluoranthene	M	mg/kg	0.1	1.3	n/t	6.8	n/t	0.1	2.3	< 0.1	49.1	n/t
Pyrene Benzo(a)anthracene	M M	mg/kg mg/kg	0.1	1.1 1.0	n/t n/t	5.6 3.4	n/t n/t	0.1 < 0.1	2.2 1.4	< 0.1 < 0.1	45.0 22.9	n/t n/t
Chrysene	M	mg/kg	0.1	1.0	n/t	3.4	n/t	0.1	1.4	< 0.1	26.7	n/t
Benzo (b) fluoranthene	M	mg/kg	0.1	1.3	n/t	3.8	n/t	0.1	1.5	< 0.1	24.0	n/t
Benzo(k)fluoranthene	M	mg/kg	0.1	1.4	n/t	4.1	n/t	0.1	1.5	< 0.1	25.1	n/t
Benzo (a) pyrene	М	mg/kg	0.1	1.3	n/t	4.1	n/t	< 0.1	1.6	< 0.1	26.7	n/t
Indeno (1,2,3-cd) pyrene	М	mg/kg	0.1	1.1	n/t	2.6	n/t	0.2	0.8	< 0.1	17.9	n/t
Dibenzo(a,h)anthracene	M	mg/kg	0.1	0.3	n/t	0.6	n/t	< 0.1	0.3	< 0.1	4.5	n/t
Benzo[g,h,i]perylene	M	mg/kg	0.1	1.0	n/t	2.6	n/t	0.1	1.2	< 0.1	17.2	n/t
Coronene	N M	mg/kg	0.1	n/t	n/t n/t	n/t	n/t n/t	n/t	n/t	n/t	n/t	n/t n/t
Total PAH(16) Total PAH(16) + Coronene	N	mg/kg mg/kg	0.4	11.8 n/t	n/t n/t	43.5 n/t	n/t n/t	1.3 n/t	15.1 n/t	< 0.4 n/t	309 n/t	n/t n/t
LIOIGIT ATT(10) + COTOTIETE	I IN	ing/kg	0.4	11/1	11/1	1#1	11/1	11// L	11/1	11/1	11/1	11/1

Report No.: 18-18532												
	Reference	142937	142940	142941	142944	142947	142951	142967	142971	142975		
	C	Customer	Reference									
			Sample ID									
			mple Type	SOIL								
			le Location	WS12	WS12	WS12	TP01	TP03	TP05	TP12	TP14	TP17/HP
			Depth (m)	0.20	2.80	3.80	0.70	0.10	0.50	0.80	0.70	0.20
.			pling Date	10/07/2018	10/07/2018	10/07/2018	06/07/2018	05/07/2018	06/07/2018	05/07/2018	05/07/2018	09/07/2018
Determinand	Codes	Units	LOD									
BTEX												
Benzene	M	ug/kg	10	< 10.0	n/t	< 10.0	n/t	< 10.0	< 10.0	< 10.0	< 10.0	n/t
Toluene	M	ug/kg	10	< 10.0	n/t	< 10.0	n/t	< 10.0	< 10.0	< 10.0	< 10.0	n/t
Ethylbenzene	M	ug/kg	10	< 10.0	n/t	< 10.0	n/t	< 10.0	< 10.0	< 10.0	< 10.0	n/t
Xylenes	M	ug/kg	10	< 10.0	n/t	< 10.0	n/t	< 10.0	< 10.0	< 10.0	< 10.0	n/t
TPH CWG												
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	n/t	< 0.01	< 0.01	< 0.01	< 0.01	n/t
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	n/t	< 0.01	< 0.01	< 0.01	< 0.01	n/t
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	n/t	< 1.0	< 1.0	< 1.0	22.9	n/t
>C10-C12 Aliphatic	N	mg/kg	1	< 1.0	n/t	1.3	n/t	< 1.0	< 1.0	< 1.0	136	n/t
>C12-C16 Aliphatic	N	mg/kg	1	9.6	n/t	3.7	n/t	< 1.0	< 1.0	< 1.0	1080	n/t
>C16-C21 Aliphatic	N	mg/kg	1	16.6	n/t	6.2	n/t	< 1.0	1.8	< 1.0	1400	n/t
>C21-C35 Aliphatic	N	mg/kg	1	32.0	n/t	36.1	n/t	< 1.0	38.1	< 1.0	1350	n/t
>C35-C40 Aliphatic	N	mg/kg	1	12.6	n/t	11.8	n/t	< 1.0	13.5	< 1.0	287	n/t
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	n/t	< 0.01	< 0.01	< 0.01	< 0.01	n/t
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	n/t	< 0.01	< 0.01	< 0.01	< 0.01	n/t
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	n/t	< 1.0	n/t	< 1.0	< 1.0	< 1.0	16.7	n/t
>C10-C12 Aromatic	N	mg/kg	1	< 1.0	n/t	< 1.0	n/t	< 1.0	< 1.0	< 1.0	114	n/t
>C12-C16 Aromatic	N	mg/kg	1	7.9	n/t	2.8	n/t	< 1.0	< 1.0	< 1.0	1050	n/t
>C16-C21 Aromatic	N	mg/kg	1	17.9	n/t	7.9	n/t	< 1.0	2.1	< 1.0	1510	n/t
>C21-C35 Aromatic	N	mg/kg	1	51.3	n/t	50.5	n/t	< 1.0	57.5	< 1.0	1880	n/t
>C35-C40 Aromatic	N	mg/kg	1	20.9	n/t	15.3	n/t	< 1.0	20.7	< 1.0	393	n/t
Total (>C5-C40) Ali/Aro	N	mg/kg	1	169	n/t	136	n/t	< 1.0	134	< 1.0	9240	n/t
OrganoChlorine Pesticides	3											
alpha-HCH	M	ug/kg	10	n/t	< 10							
beta_HCH	M	ug/kg	10	n/t	< 10							
gamma-HCH	М	ug/kg	10	n/t	< 10							
delta-HCH	N	ug/kg	10	n/t	< 10							
Heptachlor	N	ug/kg	10	n/t	< 10							
Aldrin	M	ug/kg	10	n/t	< 10							
Heptachlor expoxide	N	ug/kg	10	n/t	< 10							
trans-Chlordane	N	ug/kg	10	n/t	< 10							
alpha cis-Chlordane	N	ug/kg	10	n/t	< 10							
p,p-DDE	M	ug/kg	10	n/t	< 10							
Dieldrin	M N	ug/kg	10	n/t	< 10							
Endrin		ug/kg	10	n/t	< 10							
p,p-DDD	M N	ug/kg	10	n/t	< 10							
Endosulfan II	N	ug/kg	10 10	n/t	n/t	n/t n/t	n/t n/t	n/t n/t	n/t	n/t	n/t n/t	< 10
Endrin aldehyde	M	ug/kg	10	n/t n/t	< 10 < 10							
p,p-DDT	M	ug/kg	10	n/t n/t		n/t n/t	-	n/t n/t		n/t n/t	n/t n/t	< 10 < 10
Endosulphan sulphate	N	ug/kg	10	n/t n/t	< 10							
Methoxychlor Endrin ketone	N	ug/kg ug/kg	10	n/t n/t	< 10							
LIIGIII RECOILE	IN	ug/kg	10	11/1	11/1	11/1	11/1	11/1	11/1	11/1	11/1	\ 10

Report No.: 18-18532												
·		ELAB	Reference	142980	142987	142989	142990	142991	142994	142998	143001	143003
	(Customer	Reference									
			Sample ID									
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	TP18	TP24	TP24	TP25	TP25	TP26	TP27	TP29	TP30
			Depth (m)	2.00	0.30	1.50	0.50	2.00	0.50	1.00	1.50	1.50
D	١		pling Date	09/07/2018	05/07/2018	05/07/2018	05/07/2018	05/07/2018	09/07/2018	09/07/2018	10/07/2018	05/07/2018
Determinand	Codes	Units	LOD									
Metals												-
Arsenic	M	mg/kg	1 10	11.5	14.9	10.0	n/t	11.8	15.5	16.6	14.4	n/t
Barium Beryllium	U	mg/kg mg/kg	10	138 1.3	85.8 < 1.0	116 < 1.0	n/t n/t	119 1.1	156 1.5	200 1.2	225 < 1.0	n/t n/t
Cadmium	M	mg/kg	0.5	< 0.5	< 0.5	< 0.5	n/t	< 0.5	< 0.5	0.8	0.6	n/t
Chromium	M	mg/kg	5	26.5	19.7	14.3	n/t	26.1	29.2	33.5	22.9	n/t
Copper	М	mg/kg	5	26.9	20.7	67.0	n/t	29.4	35.4	62.5	35.7	n/t
Lead	М	mg/kg	5	205	50.4	170	n/t	125	142	203	435	n/t
Water soluble magnesium	N	g/l	0.01	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Mercury	M	mg/kg	0.5	< 0.5	< 0.5	< 0.5	n/t	< 0.5	< 0.5	< 0.5	< 0.5	n/t
Nickel	M	mg/kg	5	22.7	14.5	16.9	n/t	24.1	21.7	28.0	18.1	n/t
Selenium Vanadium	M	mg/kg	1 5	< 1.0 35.4	< 1.0 24.1	< 1.0 20.7	n/t n/t	< 1.0 31.4	1.3 44.9	< 1.0 42.1	< 1.0 32.9	n/t n/t
Zinc	M	mg/kg mg/kg	5	127	83.9	94.0	n/t	158	156	218	298	n/t
Anions	1 141	mg/ng		121	55.5	57.0	11/1	100	100	210	230	11/1
	B.4	me/l	20	n /4	n /4	n /4	r /4	n /4	n /4	n/4	n /4	r /4
Water Soluble Chloride Water Soluble Chloride	M	mg/l mg/kg	20 40	n/t < 40	n/t < 40	n/t < 40	n/t n/t	n/t < 40	n/t < 40	n/t 47	n/t < 40	n/t n/t
Water Soluble Nitrate	M	mg/l	20	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Water Soluble Sulphate	M	g/l	0.02	0.21	0.11	0.32	n/t	0.14	0.29	0.35	0.27	n/t
Inorganics												
Complex Cyanide	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Elemental Sulphur	M	mg/kg	20	172	< 20	26	n/t	37	34	305	511	n/t
Free Cyanide	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Ammoniacal Nitrogen as N	N	mg/kg	0.1	n/t	n/t	n/t	n/t	1.2	n/t	n/t	n/t	82.9
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	< 0.8	n/t	< 0.8	< 0.8	< 0.8	< 0.8	n/t
Total Sulphide	N	mg/kg	2	16	< 2	< 2	n/t	6	8	3	17	n/t
Total Cyanide	M	mg/kg	1 0.04	1.2	< 1.0	< 1.0	n/t	< 1.0	1.7	1.1	1.6	n/t
Total Sulphur Acid Soluble Sulphate (SO4)	N U	%	0.01	n/t 0.16	n/t 0.09	n/t 0.16	n/t n/t	n/t 0.08	n/t 0.20	n/t 0.22	n/t 0.15	n/t n/t
Water Soluble Boron	N	mg/kg	0.02	0.10	0.09	0.10	n/t	< 0.5	0.20	1.5	1.1	n/t
Miscellaneous		55					.,,,					
рН	M	pH units	0.1	8.8	8.3	8.7	n/t	8.3	8.5	8.4	8.2	n/t
Total Organic Carbon	N	%	0.01	0.94	1.7	4.0	n/t	0.76	1.4	1.5	2.6	n/t
Phenois		,,,					.,,,					
Total Phenois	N	mg/kg	6	< 6	< 6	< 6	n/t	< 6	< 6	< 6	< 6	n/t
Polyaromatic hydrocarbon		9/119				10	.,,,	10		0	10	.,,,
Naphthalene	M	mg/kg	0.1	1.7	0.1	0.3	n/t	< 0.1	0.1	0.2	< 0.1	n/t
Acenaphthylene	M	mg/kg	0.1	0.8	0.1	0.3	n/t	< 0.1	0.1	< 0.1	< 0.1	n/t
Acenaphthene	M	mg/kg	0.1	4.7	0.3	0.3	n/t	< 0.1	0.2	0.5	< 0.1	n/t
Fluorene	М	mg/kg	0.1	4.8	0.4	0.3	n/t	0.1	0.3	0.4	< 0.1	n/t
Phenanthrene	М	mg/kg	0.1	16.7	5.3	3.1	n/t	0.2	3.1	2.2	0.5	n/t
Anthracene	M	mg/kg	0.1	3.5	1.6	1.0	n/t	0.1	0.9	0.6	0.2	n/t
Fluoranthene	M	mg/kg	0.1	15.0	13.5	6.6	n/t	0.7	7.3	3.2	1.6	n/t
Pyrene Benzo(a)anthracene	M	mg/kg mg/kg	0.1	11.5 5.0	11.6 6.9	5.7 3.4	n/t n/t	0.9	6.3 4.1	2.7 1.4	1.4 0.9	n/t n/t
Chrysene	M	mg/kg mg/kg	0.1	5.0	7.6	3.4	n/t n/t	0.3	5.3	1.4	1.0	n/t n/t
Benzo (b) fluoranthene	M	mg/kg	0.1	4.1	7.5	3.6	n/t	0.4	5.2	1.4	1.0	n/t
Benzo(k)fluoranthene	M	mg/kg	0.1	4.1	7.5	4.0	n/t	0.6	5.2	1.1	1.0	n/t
Benzo (a) pyrene	М	mg/kg	0.1	4.5	9.1	3.5	n/t	0.5	5.8	1.5	1.1	n/t
Indeno (1,2,3-cd) pyrene	М	mg/kg	0.1	3.0	6.2	2.6	n/t	0.3	4.8	1.2	0.8	n/t
Dibenzo(a,h)anthracene	М	mg/kg	0.1	0.8	1.3	0.6	n/t	0.2	1.4	0.3	0.2	n/t
Benzo[g,h,i]perylene	M	mg/kg	0.1	3.1	5.4	3.6	n/t	0.4	4.9	1.1	0.8	n/t
Coronene	N	mg/kg	0.1	n/t	n/t 84.9	0.9	n/t	n/t	n/t	n/t	0.2	n/t
Total PAH(16) Total PAH(16) + Coronene	M N	mg/kg	0.4	89.0		42.8 43.7	n/t	5.4	55.3	19.3	10.6 10.8	n/t
TOTAL FAM (10) + COTOMETTE	IN	mg/kg	0.4	n/t	n/t	43.7	n/t	n/t	n/t	n/t	10.6	n/t

Report No.: 18-18532												
		ELAB	Reference	142980	142987	142989	142990	142991	142994	142998	143001	143003
	C	Customer	Reference									
			Sample ID									
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	TP18	TP24	TP24	TP25	TP25	TP26	TP27	TP29	TP30
			Depth (m)	2.00	0.30	1.50	0.50	2.00	0.50	1.00	1.50	1.50
			pling Date	09/07/2018	05/07/2018	05/07/2018	05/07/2018	05/07/2018	09/07/2018	09/07/2018	10/07/2018	05/07/2018
Determinand	Codes	Units	LOD									
BTEX												1
Benzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	n/t	< 10.0	< 10.0	< 10.0	< 10.0	n/t
Toluene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	n/t	< 10.0	< 10.0	< 10.0	< 10.0	n/t
Ethylbenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	n/t	< 10.0	< 10.0	< 10.0	< 10.0	n/t
Xylenes	M	ug/kg	10	< 10.0	< 10.0	< 10.0	n/t	< 10.0	< 10.0	< 10.0	< 10.0	n/t
TPH CWG												
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01	< 0.01	n/t
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	n/t	< 0.01	< 0.01	< 0.01	< 0.01	n/t
>C8-C10 Aliphatic	N	mg/kg	1	2.7	< 1.0	< 1.0	n/t	< 1.0	< 1.0	< 1.0	< 1.0	n/t
>C10-C12 Aliphatic	N	mg/kg	1	9.8	< 1.0	< 1.0	n/t	< 1.0	< 1.0	< 1.0	< 1.0	n/t
>C12-C16 Aliphatic	N	mg/kg	1	70.2	< 1.0	5.0	n/t	5.7	< 1.0	10.9	< 1.0	n/t
>C16-C21 Aliphatic	N	mg/kg	1	122	5.1	12.6	n/t	12.2	12.5	18.7	5.7	n/t
>C21-C35 Aliphatic	N	mg/kg	1	253	37.0	124	n/t	13.4	115	34.8	124	n/t
>C35-C40 Aliphatic	N	mg/kg	1 0.04	84.5	10.5	107	n/t	2.9	27.8	15.2	44.5	n/t
>C5-C7 Aromatic	N N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	n/t	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01	n/t
>C7-C8 Aromatic >C8-C10 Aromatic	N	mg/kg	1	< 0.01	< 0.01 < 1.0	< 0.01 < 1.0	n/t n/t	< 0.01 < 1.0	< 1.0	< 0.01 < 1.0	< 0.01 < 1.0	n/t n/t
>C10-C10 Aromatic	N	mg/kg mg/kg	1	7.4	< 1.0	< 1.0	n/t	< 1.0	< 1.0	1.6	< 1.0	n/t
>C12-C16 Aromatic	N	mg/kg	1	65.9	1.2	5.2	n/t	7.1	2.0	18.6	1.8	n/t
>C16-C21 Aromatic	N	mg/kg	1	121	13.3	17.6	n/t	23.9	21.2	42.7	19.2	n/t
>C21-C35 Aromatic	N	mg/kg	1	255	121	189	n/t	31.8	236	75.7	255	n/t
>C35-C40 Aromatic	N	mg/kg	1	86.5	22.7	160	n/t	10.2	65.6	27.1	109	n/t
Total (>C5-C40) Ali/Aro	N	mg/kg	1	1080	211	620	n/t	107	480	245	559	n/t
OrganoChlorine Pesticides	3											
alpha-HCH	М	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
beta HCH	M	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
gamma-HCH	M	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
delta-HCH	N	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
Heptachlor	N	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
Aldrin	М	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
Heptachlor expoxide	N	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
trans-Chlordane	N	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
alpha cis-Chlordane	N	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
p,p-DDE	M	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
Dieldrin	M	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
Endrin	N M	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
p,p-DDD Endosulfan II	N	ug/kg ug/kg	10	n/t n/t	n/t n/t	n/t n/t	< 10 < 10	n/t n/t	n/t n/t	n/t n/t	n/t n/t	n/t n/t
Endosullari II Endrin aldehyde	N	ug/kg ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
p,p-DDT	M	ug/kg ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
Endosulphan sulphate	M	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
Methoxychlor	N	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
Endrin ketone	N	ug/kg	10	n/t	n/t	n/t	< 10	n/t	n/t	n/t	n/t	n/t
		33										

Report No.: 18-18532												
		ELAB	Reference	143004	143008	143010	143015	143018	143021	143023	143024	143030
	(Customer	Reference									
			Sample ID									
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			le Location	TP30	TP31	TP32	TP35	TP36	TP37	TP37	TP37	TP39
			Depth (m)	2.50	2.50	0.50	0.40	0.10	0.50	2.00	3.00	1.70
	1		· •	05/07/2018	05/07/2018	11/07/2018	11/07/2018	09/07/2018	09/07/2018	09/07/2018	09/07/2018	10/07/2018
Determinand	Codes	Units	LOD									
Metals												
Arsenic	М	mg/kg	1	11.3	10.0	n/t	8.8	n/t	^ 8.8	12.5	n/t	13.8
Barium	U	mg/kg	10	160	60.6	n/t	62.0	n/t	84.2	115	n/t	126
Beryllium Cadmium	U M	mg/kg	0.5	< 1.0 0.6	< 1.0 < 0.5	n/t n/t	< 1.0 < 0.5	n/t n/t	< 1.0 ^ < 0.5	1.1 < 0.5	n/t n/t	1.1 < 0.5
Chromium	M	mg/kg mg/kg	5	19.3	14.1	n/t	17.6	n/t	^ 18.6	26.7	n/t	28.7
Copper	M	mg/kg	5	58.6	18.5	n/t	16.3	n/t	^ 23.1	23.2	n/t	28.4
Lead	М	mg/kg	5	131	58.5	n/t	54.6	n/t	^ 59.4	77.5	n/t	64.1
Water soluble magnesium	N	g/l	0.01	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Mercury	М	mg/kg	0.5	< 0.5	< 0.5	n/t	< 0.5	n/t	^ < 0.5	< 0.5	n/t	< 0.5
Nickel	М	mg/kg	5	16.7	9.5	n/t	11.0	n/t	^ 11.8	18.1	n/t	23.5
Selenium Vanadium	M	mg/kg	1 5	< 1.0 24.5	< 1.0 15.0	n/t n/t	< 1.0 20.1	n/t	^ < 1.0 ^ 24.6	< 1.0 36.0	n/t n/t	< 1.0 44.1
Zinc	M	mg/kg mg/kg	5	24.5	70.5	n/t	61.6	n/t n/t	^ 86.7	106	n/t	95.7
Anions	l ivi	i iiig/kg		211	70.5	1#1	01.0	11/1	30.1	100	11/1	33.1
			00	/4	/4	/4	/4	/4	/4	/4	/4	/4
Water Soluble Chloride Water Soluble Chloride	M	mg/l mg/kg	20 40	n/t 77	n/t < 40	n/t n/t	n/t < 40	n/t n/t	n/t ^ < 40	n/t < 40	n/t n/t	n/t < 40
Water Soluble Nitrate	M	mg/l	20	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Water Soluble Sulphate	М	g/l	0.02	0.52	0.07	n/t	0.06	n/t	^ 0.06	0.48	n/t	0.09
Inorganics												
Complex Cyanide	N	mg/kg	1	n/t	n/t	< 1.0	n/t	n/t	n/t	n/t	< 1.0	< 1.0
Elemental Sulphur	М	mg/kg	20	245	21	n/t	< 20	n/t	^ < 20	462	n/t	368
Free Cyanide	N	mg/kg	1	n/t	n/t	< 1.0	n/t	n/t	n/t	n/t	< 1.0	< 1.0
Ammoniacal Nitrogen as N	N	mg/kg	0.1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	11.1	1.2
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	n/t	< 0.8	n/t	< 0.8	< 0.8	n/t	< 0.8
Total Sulphide Total Cyanide	N M	mg/kg mg/kg	1	5 < 1.0	< 2 < 1.0	n/t < 1.0	< 2 < 1.0	n/t n/t	< 2 ^ < 1.0	< 2 < 1.0	n/t < 1.0	18 < 1.0
Total Sulphur	N	%	0.01	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Acid Soluble Sulphate (SO4)	U	%	0.02	0.17	0.09	n/t	0.05	n/t	0.07	0.22	n/t	0.13
Water Soluble Boron	N	mg/kg	0.5	0.7	< 0.5	n/t	< 0.5	n/t	< 0.5	1.0	n/t	0.8
Miscellaneous												
pH	М	pH units	0.1	9.9	8.0	n/t	8.3	n/t	^ 5.2	9.2	n/t	9.6
Total Organic Carbon	N	%	0.01	4.9	0.54	n/t	0.57	n/t	0.99	0.90	n/t	1.8
Phenois												
Total Phenols	N	mg/kg	6	< 6	< 6	n/t	< 6	n/t	< 6	< 6	n/t	6
Polyaromatic hydrocarbon	S											
Naphthalene	М	mg/kg	0.1	1.3	< 0.1	n/t	< 0.1	n/t	^ 0.2	1.9	n/t	10.9
Acenaphthylene	М	mg/kg	0.1	0.9	< 0.1	n/t	< 0.1	n/t	^ 0.4	0.3	n/t	0.8
Acenaphthene	M	mg/kg	0.1	1.0	< 0.1	n/t	< 0.1	n/t	^ 0.2	2.6	n/t	30.8
Fluorene	M	mg/kg	0.1	1.2	< 0.1	n/t	< 0.1 0.2	n/t	^ 0.1	2.2	n/t	24.2
Phenanthrene Anthracene	M	mg/kg mg/kg	0.1	6.5 2.5	0.4	n/t n/t	< 0.1	n/t n/t	^ 1.6 ^ 0.5	8.0 1.4	n/t n/t	55.2 9.5
Fluoranthene	M	mg/kg	0.1	13.0	1.3	n/t	0.6	n/t	^ 4.6	7.5	n/t	36.4
Pyrene	M	mg/kg	0.1	11.6	1.3	n/t	0.6	n/t	^ 4.0	5.3	n/t	24.9
Benzo(a)anthracene	М	mg/kg	0.1	6.4	0.8	n/t	0.4	n/t	^ 2.7	2.5	n/t	7.9
Chrysene	М	mg/kg	0.1	6.7	1.0	n/t	0.5	n/t	^ 3.1	2.6	n/t	9.0
Benzo (b) fluoranthene	М	mg/kg	0.1	5.6	1.0	n/t	0.6	n/t	^ 3.6	2.0	n/t	5.2
Benzo(k)fluoranthene	M	mg/kg	0.1	6.0	1.0	n/t	0.7	n/t	^ 3.1	1.9	n/t	5.5
Benzo (a) pyrene Indeno (1,2,3-cd) pyrene	M	mg/kg	0.1	6.0 3.9	1.1 0.9	n/t n/t	0.6	n/t n/t	^ 3.7 ^ 3.2	2.1 1.6	n/t n/t	5.1 3.9
Dibenzo(a,h)anthracene	M	mg/kg mg/kg	0.1	1.0	0.9	n/t	0.6	n/t	^ 0.9	0.4	n/t	1.1
Benzo[g,h,i]perylene	M	mg/kg	0.1	3.6	0.2	n/t	0.6	n/t	^ 3.1	1.4	n/t	5.8
Coronene	N	mg/kg	0.1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Total PAH(16)	М	mg/kg	0.4	77.2	9.9	n/t	5.6	n/t	^ 35.0	43.8	n/t	236
Total PAH(16) + Coronene	N	mg/kg	0.4	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t

Results Summary Report No.: 18-18532

SOIL TP37 2.00 8 09/07/201: < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 5 0.01 < 0.01 3.5 6.5 13.5 16.3	n/t	SOIL TP39 1.70 3 10/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 10.0 <10.0 10.0
TP37 2.00 8 09/07/201: < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3	TP37 3.00 8 09/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	TP39 1.70 1.70 10/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
TP37 2.00 8 09/07/201: < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3	TP37 3.00 8 09/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	TP39 1.70 1.70 10/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
TP37 2.00 8 09/07/201: < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3	TP37 3.00 8 09/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	TP39 1.70 1.70 10/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
TP37 2.00 8 09/07/201: < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3	TP37 3.00 8 09/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	TP39 1.70 1.70 10/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0
2.00 8 09/07/201:	3.00 8 09/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	1.70 3 10/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 0.01
 8 09/07/201: < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3 	8 09/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	<pre></pre>
< 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3	n/t	< 10.0 < 10.0 < 10.0 < 10.0 < 10.0
< 10.0 < 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3	n/t	< 10.0 < 10.0 < 10.0 < 10.0
< 10.0 < 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3	n/t	< 10.0 < 10.0 < 10.0 < 10.0
< 10.0 < 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3	n/t	< 10.0 < 10.0 < 10.0 < 10.0
< 10.0 < 10.0 < 0.01 < 0.01 3.5 6.5 13.5 16.3	n/t n/t n/t n/t n/t n/t n/t n/t n/t	< 10.0 < 10.0 < 0.01 < 0.01
< 0.01 < 0.01 < 0.01 3.5 6.5 13.5 16.3	n/t n/t n/t n/t n/t n/t	< 10.0 < 0.01 < 0.01
< 0.01 < 0.01 3.5 6.5 13.5 16.3	n/t n/t n/t n/t	< 0.01 < 0.01
< 0.01 3.5 6.5 13.5 16.3	n/t n/t n/t	< 0.01
< 0.01 3.5 6.5 13.5 16.3	n/t n/t n/t	< 0.01
3.5 6.5 13.5 16.3	n/t n/t	
6.5 13.5 16.3	n/t	101
13.5 16.3		
16.3	· ·	132
	n/t	181
	n/t	286
73.7	n/t	630
31.1	n/t	309
< 0.01	n/t	< 0.01
< 0.01	n/t	< 0.01
2.2	n/t	83.3
6.2	n/t	144
19.9	n/t	336
29.9	n/t	663
107	n/t	1170
45.9	n/t	499
356	n/t	4540
n/t	n/t	n/t
n/t	n/t	n/t
		n/t n/t
		n/t n/t
		n/t n/t
		n/t
	n/t	n/t
l n/t	n/t	n/t
n/t n/t	n/t	n/t
	n/t	n/t

Report No.: 18-18532												
		ELAB	Reference	143032	143034	143038	143040	143043	143046	143048	143049	143050
	(Customer	Reference									
			Sample ID									
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				TP40	TP41	TP43	TP43	TP45	TP46	TP46	TP46	TP47
			e Location									
			Depth (m)	1.00	1.50	0.50	1.90	0.10	0.30	1.50	3.00	0.05
		Sam	pling Date	09/07/2018	11/07/2018	11/07/2018	11/07/2018	10/07/2018	09/07/2018	09/07/2018	09/07/2018	10/07/2018
Determinand	Codes	Units	LOD									
Metals												
Arsenic	М	mg/kg	1	17.6	n/t	15.9	14.9	n/t	17.8	n/t	18.8	n/t
Barium	U	mg/kg	10	284	n/t	156	115	n/t	118	n/t	202	n/t
Beryllium	U	mg/kg	1	2.8	n/t	1.2	1.1	n/t	1.2	n/t	1.3	n/t
Cadmium	M	mg/kg	0.5	< 0.5	n/t	0.6	< 0.5	n/t	< 0.5	n/t	< 0.5	n/t
Chromium	M	mg/kg	5	35.7	n/t	33.1	34.0	n/t	29.8	n/t	32.7	n/t
Copper	M	mg/kg	5	28.3	n/t	42.7	32.7	n/t	23.6	n/t	65.4	n/t
Water caluble magnesium	M	mg/kg	5	40.3	n/t	249	103	n/t	44.9	n/t	184	n/t
Water soluble magnesium Mercury	M	g/l mg/kg	0.01	n/t < 0.5	n/t n/t	n/t < 0.5	n/t < 0.5	n/t n/t	n/t < 0.5	n/t n/t	n/t 0.6	n/t n/t
Nickel	M	mg/kg	5	32.5	n/t	24.5	26.0	n/t	19.3	n/t	25.8	n/t
Selenium	M	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	n/t	< 1.0	n/t	< 1.0	n/t
Vanadium	M	mg/kg	5	45.6	n/t	50.1	49.4	n/t	36.6	n/t	41.8	n/t
Zinc	М	mg/kg	5	103	n/t	278	142	n/t	97.0	n/t	185	n/t
Anions												
Water Soluble Chloride	М	mg/l	20	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Water Soluble Chloride	M	mg/kg	40	< 40	n/t	< 40	< 40	n/t	< 40	n/t	< 40	n/t
Water Soluble Nitrate	М	mg/l	20	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Water Soluble Sulphate	М	g/l	0.02	0.14	n/t	0.04	0.22	n/t	0.03	n/t	0.49	n/t
Inorganics												
Complex Cyanide	N	mg/kg	1	n/t	1.0	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Elemental Sulphur	М	mg/kg	20	176	n/t	< 20	898	n/t	< 20	n/t	302	n/t
Free Cyanide	N	mg/kg	1	n/t	< 1.0	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Ammoniacal Nitrogen as N	N	mg/kg	0.1	n/t	n/t	n/t	n/t	n/t	n/t	1.2	n/t	n/t
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	n/t	< 0.8	< 0.8	n/t	< 0.8	n/t	< 0.8	n/t
Total Sulphide	N	mg/kg	2	< 2	n/t	< 2	120	n/t	< 2	n/t	< 2	n/t
Total Cyanide	M	mg/kg	1	< 1.0	1.0	< 1.0	< 1.0	n/t	< 1.0	n/t	1.2	n/t
Total Sulphur	N	%	0.01	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Acid Soluble Sulphate (SO4) Water Soluble Boron	U N	% mg/kg	0.02	0.15 2.0	n/t n/t	0.08 < 0.5	0.11 < 0.5	n/t n/t	0.09 < 0.5	n/t n/t	0.21 2.9	n/t n/t
	I IN	IIIg/kg	0.5	2.0	11/1	< 0.5	< 0.5	11/1	< 0.5	11/1	2.9	11/1
Miscellaneous												
pH	M	pH units	0.1	8.7	n/t	8.1	8.6	n/t	8.0	n/t	8.3	n/t
Total Organic Carbon	N	%	0.01	0.74	n/t	1.5	1.3	n/t	0.93	n/t	1.9	n/t
Phenois												
Total Phenols	N	mg/kg	6	< 6	n/t	< 6	< 6	n/t	< 6	n/t	< 6	n/t
Polyaromatic hydrocarbon	S											
Naphthalene	М	mg/kg	0.1	1.1	n/t	0.4	< 0.1	n/t	< 0.1	n/t	0.1	n/t
Acenaphthylene	М	mg/kg	0.1	0.2	n/t	0.4	0.2	n/t	0.2	n/t	0.2	n/t
Acenaphthene	M	mg/kg	0.1	1.4	n/t	0.4	0.4	n/t	0.1	n/t	0.4	n/t
Fluorene	M	mg/kg	0.1	1.3	n/t	0.4	0.6	n/t	0.1	n/t	0.5	n/t
Phenanthrene	M	mg/kg	0.1	8.1	n/t	3.0	1.1	n/t	2.5	n/t	3.3	n/t
Anthracene Fluoranthene	M	mg/kg mg/kg	0.1	2.4 14.3	n/t n/t	0.9 9.5	0.4 5.9	n/t n/t	0.8 5.5	n/t n/t	1.0 5.7	n/t n/t
Pyrene	M	mg/kg	0.1	12.1	n/t	7.9	4.5	n/t	4.5	n/t	4.7	n/t
Benzo(a)anthracene	M	mg/kg	0.1	6.5	n/t	4.5	2.9	n/t	2.6	n/t	2.4	n/t
Chrysene	M	mg/kg	0.1	6.8	n/t	5.2	2.9	n/t	2.9	n/t	2.6	n/t
Benzo (b) fluoranthene	M	mg/kg	0.1	7.0	n/t	5.4	2.5	n/t	2.9	n/t	2.3	n/t
Benzo(k)fluoranthene	М	mg/kg	0.1	7.2	n/t	5.2	2.4	n/t	2.8	n/t	2.4	n/t
Benzo (a) pyrene	М	mg/kg	0.1	6.4	n/t	5.1	2.4	n/t	2.7	n/t	2.3	n/t
Indeno (1,2,3-cd) pyrene	М	mg/kg	0.1	4.4	n/t	3.8	1.8	n/t	1.8	n/t	1.5	n/t
Dibenzo(a,h)anthracene	М	mg/kg	0.1	1.1	n/t	1.0	0.5	n/t	0.4	n/t	0.3	n/t
Benzo[g,h,i]perylene	М	mg/kg	0.1	4.6	n/t	3.5	1.4	n/t	2.0	n/t	1.7	n/t
Coronene	N	mg/kg	0.1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Total PAH(16)	M	mg/kg	0.4	85.1	n/t	56.4	30.0	n/t	31.8	n/t	31.1	n/t
Total PAH(16) + Coronene	N	mg/kg	0.4	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t

Report No.: 18-18532												
		ELAB	Reference	143032	143034	143038	143040	143043	143046	143048	143049	143050
	C	Customer	Reference									
			Sample ID									
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	TP40	TP41	TP43	TP43	TP45	TP46	TP46	TP46	TP47
						_						
			Depth (m)	1.00	1.50	0.50	1.90	0.10	0.30	1.50	3.00	0.05
				09/07/2018	11/07/2018	11/07/2018	11/07/2018	10/07/2018	09/07/2018	09/07/2018	09/07/2018	10/07/2018
Determinand	Codes	Units	LOD									
BTEX												
Benzene	M	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0	n/t	< 10.0	n/t
Toluene	M	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0	n/t	< 10.0	n/t
Ethylbenzene	M	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0	n/t	< 10.0	n/t
Xylenes	M	ug/kg	10	< 10.0	n/t	< 10.0	< 10.0	n/t	< 10.0	n/t	< 10.0	n/t
TPH CWG												
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01	n/t	< 0.01	n/t
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01	n/t	< 0.01	n/t
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	n/t	< 1.0	n/t	< 1.0	n/t
>C10-C12 Aliphatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	n/t	< 1.0	n/t	< 1.0	n/t
>C12-C16 Aliphatic	N	mg/kg	1	2.2	n/t	< 1.0	< 1.0	n/t	< 1.0	n/t	< 1.0	n/t
>C16-C21 Aliphatic	N	mg/kg	1	5.6	n/t	2.6	2.8	n/t	1.2	n/t	2.8	n/t
>C21-C35 Aliphatic	N	mg/kg	1	26.6	n/t	17.3	40.1	n/t	19.2	n/t	15.6	n/t
>C35-C40 Aliphatic	N	mg/kg	1	7.5	n/t	5.6	3.8	n/t	8.1	n/t	4.5	n/t
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01	n/t	< 0.01	n/t
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	n/t	< 0.01	< 0.01	n/t	< 0.01	n/t	< 0.01	n/t
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	n/t	< 1.0	n/t	< 1.0	n/t
>C10-C12 Aromatic	N	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	n/t	< 1.0	n/t	< 1.0	n/t
>C12-C16 Aromatic	N	mg/kg	1	9.6	n/t	< 1.0	< 1.0	n/t	< 1.0	n/t	< 1.0	n/t
>C16-C21 Aromatic	N	mg/kg	1	39.2	n/t	7.1	3.8	n/t	2.9	n/t	5.6	n/t
>C21-C35 Aromatic	N	mg/kg	1	200	n/t	44.0	38.1	n/t	47.6	n/t	24.6	n/t
>C35-C40 Aromatic	N	mg/kg	1	21.8	n/t	8.6	3.3	n/t	14.2	n/t	4.0	n/t
Total (>C5-C40) Ali/Aro	N	mg/kg	1	312	n/t	85.2	91.9	n/t	93.2	n/t	57.1	n/t
OrganoChlorine Pesticides	3											
alpha-HCH	M	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
beta_HCH	M	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
gamma-HCH	M	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
delta-HCH	N	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
Heptachlor	N	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
Aldrin	M	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
Heptachlor expoxide	N	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
trans-Chlordane	N	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
alpha cis-Chlordane	N	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
p,p-DDE	M	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
Dieldrin	M	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
Endrin	N N	ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
p,p-DDD Endosulfan II	M N	ug/kg	10 10	n/t n/t	n/t n/t	n/t n/t	n/t n/t	< 10 < 10	n/t n/t	n/t n/t	n/t n/t	< 10 < 10
Endosuitan II Endrin aldehyde	N	ug/kg	10	n/t n/t	n/t n/t	n/t n/t	n/t n/t	< 10	n/t n/t	n/t n/t	n/t n/t	< 10
p,p-DDT	M	ug/kg	10	n/t n/t	n/t n/t	n/t n/t	n/t n/t	< 10	n/t n/t	n/t n/t	n/t n/t	< 10
Endosulphan sulphate	M	ug/kg ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
Methoxychlor	N	ug/kg ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
Endrin ketone	N	ug/kg ug/kg	10	n/t	n/t	n/t	n/t	< 10	n/t	n/t	n/t	< 10
2.13.117 NOTOTIO		ug/ng	.0	.,,,,	1//1	1,41	141	\ 10	101	.,,,,	1.01	_ 10

Report No.: 18-18532												
		ELAB	Reference	143053	143055	143057	143058	143059	143060	143063	143102	143103
	(Customer	Reference									
			Sample ID									
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	TP47	TP48	TP48	TP49	TP49	TP49	TP50	HP07A	HP07B
		Sample	Depth (m)	2.70	1.50	2.50	0.40	1.50	2.50	1.20	0.05	0.10
		Sam	pling Date	10/07/2018	10/07/2018	10/07/2018	10/07/2018	10/07/2018	10/07/2018	10/07/2018	12/07/2018	12/07/2018
Determinand	Codes	Units	LOD									
Metals												
Arsenic	М	mg/kg	1	12.5	n/t	n/t	17.5	n/t	15.5	12.3	24.2	8.1
Barium	U	mg/kg	10	112	n/t	n/t	99.9	n/t	243	127	18.2	36.5
Beryllium	U	mg/kg	1	< 1.0	n/t	n/t	< 1.0	n/t	1.9	< 1.0	< 1.0	< 1.0
Cadmium	M	mg/kg	0.5	< 0.5	n/t	n/t	< 0.5	n/t	5.5	0.6	< 0.5	< 0.5
Chromium	M	mg/kg	5	22.2	n/t	n/t	26.3	n/t	30.9	25.6	23.5	10.7
Copper	M M	mg/kg	5 5	24.2 86.0	n/t n/t	n/t n/t	27.1 94.7	n/t n/t	341 474	34.5 94.4	11.5 32.9	7.1 19.4
Water soluble magnesium	N	mg/kg g/l	0.01	n/t	< 0.01	< 0.01	94.7 n/t	n/t	n/t	94.4 n/t	n/t	n/t
Mercury	M	mg/kg	0.01	< 0.5	n/t	n/t	< 0.5	n/t	< 0.5	< 0.5	< 0.5	< 0.5
Nickel	M	mg/kg	5	18.5	n/t	n/t	20.0	n/t	32.3	19.6	6.2	15.7
Selenium	M	mg/kg	1	< 1.0	n/t	n/t	< 1.0	n/t	< 1.0	< 1.0	2.7	< 1.0
Vanadium	М	mg/kg	5	28.0	n/t	n/t	34.6	n/t	40.6	36.2	39.9	14.8
Zinc	М	mg/kg	5	137	n/t	n/t	103	n/t	546	126	18.4	56.5
Anions												
Water Soluble Chloride	М	mg/l	20	n/t	< 20	< 20	n/t	n/t	n/t	n/t	n/t	n/t
Water Soluble Chloride	М	mg/kg	40	< 40	n/t	n/t	< 40	n/t	< 40	< 40	78	61
Water Soluble Nitrate	М	mg/l	20	n/t	< 20	< 20	n/t	n/t	n/t	n/t	n/t	n/t
Water Soluble Sulphate	M	g/l	0.02	0.21	0.08	0.08	0.13	n/t	0.17	0.08	0.07	0.73
Inorganics												
Complex Cyanide	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	1.7	1.6
Elemental Sulphur	М	mg/kg	20	1270	n/t	n/t	< 20	n/t	193	255	< 20	61
Free Cyanide	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	< 1.0	< 1.0
Ammoniacal Nitrogen as N	N	mg/kg	0.1	n/t	n/t	n/t	n/t	1.2	n/t	n/t	14.3	7.7
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	n/t	n/t	< 0.8	n/t	< 0.8	< 0.8	< 0.8	< 0.8
Total Sulphide Total Cyanide	N M	mg/kg	1	130 < 1.0	n/t n/t	n/t n/t	< 2 < 1.0	n/t n/t	14 1.4	7 < 1.0	< 2 1.7	< 2 1.6
Total Sulphur	N	mg/kg %	0.01	n/t	0.08	0.02	n/t	n/t	n/t	n/t	n/t	n/t
Acid Soluble Sulphate (SO4)	U	%	0.01	0.12	0.00	0.02	0.13	n/t	0.12	0.10	0.46	0.32
Water Soluble Boron	N	mg/kg	0.5	0.8	n/t	n/t	< 0.5	n/t	1.8	0.9	2.0	2.2
Miscellaneous												
pH	М	pH units	0.1	8.3	7.7	7.1	8.7	n/t	8.4	8.1	3.7	5.0
Total Organic Carbon	N	%	0.01	1.1	n/t	n/t	1.5	n/t	2.5	1.1	17	7.3
Phenols												
Total Phenois	N	mg/kg	6	< 6	n/t	n/t	< 6	n/t	< 6	< 6	< 6	< 6
Polyaromatic hydrocarbon		ilig/kg		_ ` ` `	11/1	11/1		11/1	_ ` ` `			
Naphthalene			0.1	0.4	m /4	m /4	.01	m /4	4.4	0.2	.01	.01
Acenaphthylene	M M	mg/kg mg/kg	0.1	0.1	n/t n/t	n/t n/t	< 0.1	n/t n/t	4.4 2.7	0.3	< 0.1 < 0.1	< 0.1 < 0.1
Acenaphthene	M	mg/kg	0.1	1.3	n/t	n/t	< 0.1	n/t	25.5	0.2	< 0.1	< 0.1
Fluorene	M	mg/kg	0.1	0.6	n/t	n/t	0.2	n/t	33.8	0.3	< 0.1	< 0.1
Phenanthrene	М	mg/kg	0.1	2.2	n/t	n/t	2.0	n/t	350	1.9	< 0.1	0.2
Anthracene	М	mg/kg	0.1	0.8	n/t	n/t	0.5	n/t	116	0.5	< 0.1	< 0.1
Fluoranthene	М	mg/kg	0.1	9.6	n/t	n/t	3.9	n/t	403	4.4	0.1	0.3
Pyrene	M	mg/kg	0.1	9.2	n/t	n/t	3.4	n/t	324	3.9	0.2	0.3
Benzo(a)anthracene	M	mg/kg	0.1	6.2	n/t	n/t	1.9	n/t	151	2.2	< 0.1	0.4
Chrysene	M	mg/kg	0.1	7.3	n/t	n/t	2.2	n/t	153	2.4	0.1	0.2
Benzo (b) fluoranthene Benzo(k)fluoranthene	M M	mg/kg mg/kg	0.1	9.9 9.0	n/t n/t	n/t n/t	2.3 2.4	n/t n/t	124 113	2.5 2.4	< 0.1 < 0.1	< 0.1 < 0.1
Benzo (a) pyrene	M	mg/kg	0.1	11.1	n/t	n/t	2.4	n/t	123	2.4	0.2	0.3
Indeno (1,2,3-cd) pyrene	M	mg/kg	0.1	7.6	n/t	n/t	1.6	n/t	79.1	1.7	1.4	0.3
Dibenzo(a,h)anthracene	M	mg/kg	0.1	1.8	n/t	n/t	0.4	n/t	18.8	0.4	0.4	0.2
Benzo[g,h,i]perylene	M	mg/kg	0.1	7.9	n/t	n/t	1.8	n/t	79.1	2.2	2.8	1.2
	N	mg/kg	0.1	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t	n/t
Coronene	IN	mg/kg	0	11/1								
Coronene Total PAH(16) Total PAH(16) + Coronene	M N	mg/kg mg/kg	0.4	85.2 n/t	n/t n/t	n/t n/t	25.1 n/t	n/t n/t	2100 n/t	28.1 n/t	5.3 n/t	3.8 n/t

143059 SOIL TP49 1.50 10/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	SOIL TP49 2.50 10/07/2018	SOIL TP50 1.20 10/07/2018	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <1.0 <1	SOIL
TP49 1.50 1.50 10/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	TP49 2.50 10/07/2018 1	TP50 1.20 10/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <1.0 <1.0	HP07A 0.05 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 1.0 0.01 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	HP07B 0.10 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0
TP49 1.50 1.50 10/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	TP49 2.50 10/07/2018 1	TP50 1.20 10/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <1.0 <1.0	HP07A 0.05 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 1.0 0.01 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	HP07B 0.10 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0
TP49 1.50 1.50 10/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	TP49 2.50 10/07/2018 1	TP50 1.20 10/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <1.0 <1.0	HP07A 0.05 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 1.0 0.01 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	HP07B 0.10 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0
TP49 1.50 1.50 10/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	TP49 2.50 10/07/2018 1	TP50 1.20 10/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <1.0 <1.0	HP07A 0.05 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 1.0 0.01 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	HP07B 0.10 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0
1.50 3 10/07/2018 n/t n/t n/t n/t n/t n/t n/t n/t n/t n/	2.50 10/07/2018 10/07/	1.20 10/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.05 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	0.10 12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 1.0 < 0.01 < 1.0 < 1.0 < 1.0 < 1.0
n/t	<pre>< 10.07/2018</pre>	<pre>< 10.0 < 10.0 < 1.0 < 5.1.0 < 1.0 < 1.0 < 1.0 < 5.4 </pre> <pre>5.6</pre>	12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 10.0 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	<pre>12/07/2018 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 0.01 < 1.0 < 1.0 < 1.0 < 1.0</pre>
n/t	< 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 1.8 3.2 26.2 108 579 229 < 0.01	< 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 1.0 < 1.0 2.1 5.4 19.4 5.6	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <1.0 <1	< 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 0.01 < 1.0 < 1.0 < 1.0
n/t	< 10.0 < 10.0 < 10.0 < 0.01 1.8 3.2 26.2 108 579 229 < 0.01	< 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 1.0 < 1.0 < 1.0 5.4 19.4 5.6	<10.0 <10.0 <10.0 <10.0 <0.01 <1.0 <1.0	<10.0 <10.0 <10.0 <10.0 <0.01 <1.0 <1.0
n/t	< 10.0 < 10.0 < 10.0 < 0.01 1.8 3.2 26.2 108 579 229 < 0.01	< 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 1.0 < 1.0 < 1.0 5.4 19.4 5.6	<10.0 <10.0 <10.0 <10.0 <0.01 <1.0 <1.0	<10.0 <10.0 <10.0 <10.0 <0.01 <1.0 <1.0
n/t	< 10.0 < 10.0 < 10.0 < 0.01 1.8 3.2 26.2 108 579 229 < 0.01	< 10.0 < 10.0 < 10.0 < 10.0 < 0.01 < 1.0 < 1.0 < 1.0 5.4 19.4 5.6	<10.0 <10.0 <10.0 <10.0 <0.01 <1.0 <1.0	<10.0 <10.0 <10.0 <10.0 <0.01 <1.0 <1.0
n/t	< 10.0 < 10.0 < 0.01 < 0.01 1.8 3.2 26.2 108 579 229 < 0.01	< 10.0 < 10.0 < 0.01 < 0.01 < 1.0 < 1.0 < 1.0 5.4 19.4 5.6	<10.0 <10.0 <10.0 <0.01 <1.0 <1.0 <1.0 <	<10.0 <10.0 <0.01 <0.01 <1.0 <1.0 <1.0 <
n/t n/t n/t n/t n/t n/t n/t n/t	< 10.0 < 0.01 < 0.01 1.8 3.2 26.2 108 579 229 < 0.01	< 10.0 < 0.01 < 0.01 < 1.0 < 1.0 2.1 5.4 19.4 5.6	< 0.01 < 0.01 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 2.8	< 10.0 < 0.01 < 0.01 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
n/t	<0.01 <0.01 1.8 3.2 26.2 108 579 229 <0.01	< 0.01 < 0.01 < 1.0 < 1.0 2.1 5.4 19.4 5.6	< 0.01 < 0.01 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 0.01 < 0.01 < 1.0 < 1.0 < 1.0 < 1.0
n/t	<0.01 1.8 3.2 26.2 108 579 229 <0.01	< 0.01 < 1.0 < 1.0 2.1 5.4 19.4 5.6	< 0.01 < 1.0 < 1.0 < 1.0 < 1.0 2.8	< 0.01 < 1.0 < 1.0 < 1.0 < 1.0
n/t	<0.01 1.8 3.2 26.2 108 579 229 <0.01	< 0.01 < 1.0 < 1.0 2.1 5.4 19.4 5.6	< 0.01 < 1.0 < 1.0 < 1.0 < 1.0 2.8	< 0.01 < 1.0 < 1.0 < 1.0 < 1.0
n/t	<0.01 1.8 3.2 26.2 108 579 229 <0.01	< 0.01 < 1.0 < 1.0 2.1 5.4 19.4 5.6	< 0.01 < 1.0 < 1.0 < 1.0 < 1.0 2.8	< 0.01 < 1.0 < 1.0 < 1.0 < 1.0
n/t	1.8 3.2 26.2 108 579 229 < 0.01	< 1.0 < 1.0 2.1 5.4 19.4 5.6	< 1.0 < 1.0 < 1.0 < 1.0 < 2.8	< 1.0 < 1.0 < 1.0 < 1.0
n/t n/t n/t n/t n/t	3.2 26.2 108 579 229 < 0.01	< 1.0 2.1 5.4 19.4 5.6	< 1.0 < 1.0 < 1.0 2.8	< 1.0 < 1.0 < 1.0
n/t n/t n/t n/t	108 579 229 < 0.01	5.4 19.4 5.6	< 1.0 2.8	< 1.0
n/t n/t n/t	579 229 < 0.01	19.4 5.6	2.8	
n/t n/t	229 < 0.01	5.6		< 1.0
n/t	< 0.01		4.0	
-		- 0.01	< 1.0	< 1.0
m /4	< 0.01	< 0.01	< 0.01	< 0.01
n/t	\ 0.01	< 0.01	< 0.01	< 0.01
n/t	< 1.0	< 1.0	< 1.0	< 1.0
n/t	5.1	< 1.0	< 1.0	< 1.0
n/t	70.3	2.2	< 1.0	< 1.0
n/t	360	10.4	< 1.0	< 1.0
n/t	1070	49.6	< 1.0	4.2
n/t	268	9.5	< 1.0	< 1.0
n/t	2720	104	2.8	4.2
		n/t		n/t
				n/t
-				n/t
-				n/t
				n/t
				n/t
				n/t n/t
				n/t n/t
				n/t n/t
				n/t
n/t	n/t	n/t	n/t	n/t
1	n/t	n/t	n/t	n/t
n/t	n/t	n/t	n/t	n/t
n/t n/t				n/t
	n/t n/t	n/t	n/t n/t n/t n/t n/t n/t	n/t n/t n/t n/t n/t n/t n/t n/t

2683

Report No.: 18-18532								
		ELAB	Reference	142892	142908	142927	142929	142979
	Cu	stomer	Reference					
			Sample ID					
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	WS02	WS05	WS09	WS09	TP18
		Sample	Depth (m)	2.70	3.50	1.50	3.50	1.00
		Sam	pling Date	10/07/2018	05/07/2018	05/07/2018	05/07/2018	09/07/2018
Determinand	Codes	Units	LOD					
VOC								
Heptane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Octane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Nonane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Benzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
Toluene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
Ethylbenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
m+p-xylene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
o-xylene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
cis-1,2-dichloroethene 1,1-Dichloroethane	M	ug/kg	10 10	< 10.0 < 10.0	< 10.0 < 10.0	< 10.0 < 10.0	< 10.0 < 10.0	^ < 10.0 ^ < 10.0
Chloroform	M	ug/kg ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
Tetrachloromethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
1,1,1-Trichloroethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
Trichloroethylene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
Tetrachloroethylene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
1,1,1,2-Tetrachloroethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
1,1,2,2-Tetrachloroetha	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
Chlorobenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
Bromobenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
Bromodichloromethane Methylethylbenzene	M	ug/kg	10	< 10.0	< 10.0 < 10.0	< 10.0	< 10.0	^ < 10.0
1,1-Dichloro-1-propene	M	ug/kg ug/kg	10 10	< 10.0 < 10.0	< 10.0	< 10.0 < 10.0	< 10.0 < 10.0	^ < 10.0 ^ < 10.0
Trans - 1-2 -dichloroethylene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2.2-Dichloropropane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromochloromethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dichloroethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Dibromomethane	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
1,2-Dichloropropane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
cis-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
trans-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
1,1,2-Trichloroethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Dibromochloromethane 1,3-Dichloropropane	N N	ug/kg	10 10	< 10.0 < 10.0				
1,2-dibromoethane	M	ug/kg ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	^ < 10.0
Styrene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Propylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2-Chlorotoluene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2,4-Trimethylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorotoluene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
t-butylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,3,5-Trimethylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1-methylpropylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
o-cymene 1,3-Dichlorobenzene	N N	ug/kg ug/kg	10 10	< 10.0 < 10.0				
Butylbenzene	N							
1,2-Dibromo-3-chloropropane	N	ug/kg ug/kg	10	< 10.0 < 10.0				
Hexachlorobutadiene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1-2-3 - Trichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Naphthalene	N	ug/kg	10	< 10.0	< 10.0	48.2	18.0	< 10.0
1-2-4 - Trichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,4-Dichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromoform	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
VOC TIC								
Various	N	ug/kg	10	None Detected	None Detected	Υ	None Detected	None Detected
Naphthalene, 1-methyl-	N	ug/kg	10	-	-	< 10	-	

2683

Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,2-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene		stomer Sai Sample Sample Sam	Reference Reference Reference Sample ID mple Type e Location Depth (m) pling Date LOD 10 10 10 10 10 10 10	SOIL TP24 1.50 05/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	SOIL TP27 1.00 09/07/2018 <10.0 <10.0 <10.0	SOIL TP29 1.50 10/07/2018 <10.0 <10.0 <10.0	SOIL TP30 2.50 05/07/2018 <10.0 <10.0	SOIL TP31 2.50 05/07/2018
Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,2-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N N M M M M M M M	Sample Sample Sample Sample Units ug/kg	Sample ID mple Type e Location Depth (m) pling Date LOD 10 10 10 10 10 10 10	TP24 1.50 05/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0	TP27 1.00 09/07/2018 < 10.0 < 10.0	TP29 1.50 10/07/2018	TP30 2.50 05/07/2018	TP31 2.50 05/07/2018
Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,2-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N N M M M M M M M M M M	Sample Sample Sample Sam Units ug/kg	mple Type e Location Depth (m) pling Date LOD 10 10 10 10 10 10 10 10	TP24 1.50 05/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0	TP27 1.00 09/07/2018 < 10.0 < 10.0	TP29 1.50 10/07/2018	TP30 2.50 05/07/2018	TP31 2.50 05/07/2018
VOC Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Chlorobenzene BromodenJene Bromodichloromethane 1,1-2Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-2Tetrachloroethane 1,1-2Tetrachloroethane 1,1-2Tetrachloroethane 1,1-2Tetrachloroethane Dibromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N N M M M M M M M M M M	Sample Sample Sample Sam Units ug/kg	mple Type e Location Depth (m) pling Date LOD 10 10 10 10 10 10 10 10	TP24 1.50 05/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0	TP27 1.00 09/07/2018 < 10.0 < 10.0	TP29 1.50 10/07/2018	TP30 2.50 05/07/2018	TP31 2.50 05/07/2018
VOC Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Chlorobenzene BromodenJene Bromodichloromethane 1,1-2Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-2Tetrachloroethane 1,1-2Tetrachloroethane 1,1-2Tetrachloroethane 1,1-2Tetrachloroethane Dibromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N N M M M M M M M M M M	Sample Sample Sam Units ug/kg	e Location Depth (m) pling Date LOD 10 10 10 10 10 10 10 10	TP24 1.50 05/07/2018 <10.0 <10.0 <10.0 <10.0 <10.0	TP27 1.00 09/07/2018 < 10.0 < 10.0	TP29 1.50 10/07/2018	TP30 2.50 05/07/2018	TP31 2.50 05/07/2018
WOC Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Chlorobenzene Bromodenzene Bromodichloromethane 1,1-Dichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethylene 1,1-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N N M M M M M M M M M M	Sample Sample Sam Units ug/kg	Depth (m) pling Date LOD 10 10 10 10 10 10 10 10 10	1.50 05/07/2018 < 10.0 < 10.0 < 10.0 < 10.0	1.00 09/07/2018 < 10.0 < 10.0	1.50 10/07/2018 < 10.0	2.50 05/07/2018 < 10.0	2.50 05/07/2018
WOC Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Chlorobenzene Bromodenzene Bromodichloromethane 1,1-Dichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethylene 1,1-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N N M M M M M M M M M M	Sample Sample Sam Units ug/kg	Depth (m) pling Date LOD 10 10 10 10 10 10 10 10 10	1.50 05/07/2018 < 10.0 < 10.0 < 10.0 < 10.0	09/07/2018 < 10.0 < 10.0	10/07/2018	2.50 05/07/2018 < 10.0	05/07/2018
WOC Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Chlorobenzene Bromodenzene Bromodichloromethane 1,1-Dichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethylene 1,1-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N N M M M M M M M M M M	Units ug/kg	10 10 10 10 10 10 10	< 10.0 < 10.0 < 10.0 < 10.0 < 10.0	09/07/2018 < 10.0 < 10.0	10/07/2018	05/07/2018 < 10.0	05/07/2018
WOC Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Chlorobenzene Bromodichloromethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N N M M M M M	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 10 10 10 10 10	< 10.0 < 10.0 < 10.0 < 10.0	< 10.0 < 10.0	< 10.0	< 10.0	
WOC Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Chlorobenzene Bromodichloromethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N N M M M M M	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 10 10 10 10 10	< 10.0 < 10.0 < 10.0	< 10.0			< 10.0
Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene oxylene cis-1,2-dichloroethene 1,1-Dichloroethane (Thichloroethylene 1,1,1-Trichloroethane Tritachloromethane 1,1,1-Trichloroethylene 1,1,1,2-Tetrachloroethylene 1,1,1,2-Tetrachloroethane Chlorobenzene Bromodichloromethane 1,1,2-Tetrachloroethylene 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Dichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N M M M M M M M M M M M M M M M M M M	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 10 10 10 10	< 10.0 < 10.0 < 10.0	< 10.0			< 10.0
Heptane Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene oxylene cis-1,2-dichloroethene 1,1-Dichloroethane (Thichloroethylene 1,1,1-Trichloroethane Tritachloromethane 1,1,1-Trichloroethylene 1,1,1,2-Tetrachloroethylene 1,1,1,2-Tetrachloroethane Chlorobenzene Bromodichloromethane 1,1,2-Tetrachloroethylene 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Dichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N M M M M M M M M M M M M M M M M M M	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 10 10 10 10	< 10.0 < 10.0 < 10.0	< 10.0			< 10.0
Octane Nonane Benzene Toluene Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloroethane Trichloroethane Trichloroethylene 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,2-Tetrachloroethane Bromobenzene Bromodenloromethane 1,1-Dichloro-1-propene Trans - 1-2 - dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N N M M M M M M M M M M M M M M M M M M	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 10 10 10 10	< 10.0 < 10.0 < 10.0	< 10.0			< 10.0
Nonane Benzene Toluene Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloroethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethylene Eromodenzene Bromobenzene Bromodenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dichloroorpopane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M M M M M M M M M M M M M M	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 10 10 10	< 10.0 < 10.0		< 10.0		
Benzene Toluene Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane I,1,1,2-Tetrachloroethane I,1,1,2-Tetrachloroethane I,1,1,2-Tetrachloroethane I,2-Dichloromethane Methylethylbenzene I,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M M M M M M	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 10 10	< 10.0	< 10.0			< 10.0
Toluene Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane 1,1-Trichloroethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloroethane Dichloroorpopane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M M M M M M	ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 10			< 10.0	< 10.0	< 10.0
Ethylbenzene m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 - dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M M M M M	ug/kg ug/kg ug/kg ug/kg	10 10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
m+p-xylene o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloroethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethylene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 - dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M M M M M	ug/kg ug/kg ug/kg	10		< 10.0	< 10.0	< 10.0	< 10.0
o-xylene cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans -1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M M M M	ug/kg ug/kg		< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
cis-1,2-dichloroethene 1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans -1-2-dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M M M	ug/kg		< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloroethane Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene Trichloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroetha Chlorobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M M		10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chloroform Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroetha Chlorobenzene Bromobenzene Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 - dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 - dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M		10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Tetrachloromethane 1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 - dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,1-Trichloroethane Trichloroethylene Tetrachloroethylene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Trichloroethylene Tetrachloroethylene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroetha Chlorobenzene Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene		ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroetha Chlorobenzene Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 - dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene		ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroetha Chlorobenzene Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 - dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,2,2-Tetrachloroetha Chlorobenzene Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chlorobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromobenzene Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M		10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromodichloromethane Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 - dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene		ug/kg						
Methylethylbenzene 1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Trans - 1-2 -dichloroethylene 2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2,2-Dichloropropane Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromochloromethane 1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dichloroethane Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Dibromomethane 1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dichloropropane cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
trans-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
4.4.0.T.: 11	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,2-Trichloroethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Dibromochloromethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,3-Dichloropropane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-dibromoethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Styrene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Propylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2-Chlorotoluene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1.2.4-Trimethylbenzene	N		10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
. ,		ug/kg						
4-Chlorotoluene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
t-butylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,3,5-Trimethylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1-methylpropylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
o-cymene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,3-Dichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Butylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dibromo-3-chloropropane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Hexachlorobutadiene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1-2-3 - Trichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Naphthalene	N	ug/kg	10	< 10.0	48.2	< 10.0	< 10.0	< 10.0
1-2-4 - Trichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,4-Dichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromoform		ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
	N	ug/kg	10	× 10.0	× 10.0	× 10.0	× 10.0	× 10.0
VOC TIC	N							
Various		ug/kg	10	None Detected	None Detected	None Detected	Y	None Detected
Naphthalene, 1-methyl-	N N	ug/kg	10	-	-	-	< 10	-

Report No.: 18-18532		ELARI	Reference	143016	143023	143030	143032	143040
	Cu		Reference	143016	143023	143030	143032	143040
	Cu		Sample ID					
				00"	0011	0011	2011	0011
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	TP35	TP37	TP39	TP40	TP43
			Depth (m)	1.30	2.00	1.70	1.00	1.90
		Sam	pling Date	11/07/2018	09/07/2018	10/07/2018	09/07/2018	11/07/2018
Determinand	Codes	Units	LOD					
VOC								
Heptane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Octane	N N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Nonane	N N	ug/kg	10 10	< 10.0 < 10.0	< 10.0 < 10.0	< 10.0 < 10.0	< 10.0 < 10.0	< 10.0
Benzene Toluene	M M	ug/kg ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0 < 10.0
Ethylbenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
m+p-xylene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
o-xylene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
cis-1,2-dichloroethene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloroethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chloroform	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Tetrachloromethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,1-Trichloroethane Trichloroethylene	M M	ug/kg	10 10	< 10.0 < 10.0				
Tetrachloroethylene	M	ug/kg ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,1,2-Tetrachloroethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,2,2-Tetrachloroetha	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chlorobenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromobenzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromodichloromethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Methylethylbenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Trans - 1-2 -dichloroethylene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2,2-Dichloropropane Bromochloromethane	N N	ug/kg ug/kg	10 10	< 10.0 < 10.0				
1,2-Dichloroethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Dibromomethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dichloropropane	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
cis-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
trans-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,2-Trichloroethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Dibromochloromethane	N N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,3-Dichloropropane	N M	ug/kg	10 10	< 10.0 < 10.0	< 10.0 < 10.0	< 10.0 < 10.0	< 10.0	< 10.0
1,2-dibromoethane Styrene	N N	ug/kg ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0 < 10.0	< 10.0 < 10.0
Propylbenzene	N N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2-Chlorotoluene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2,4-Trimethylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorotoluene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
t-butylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,3,5-Trimethylbenzene	N N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1-methylpropylbenzene	N N	ug/kg	10	< 10.0	< 10.0 < 10.0	< 10.0	< 10.0	< 10.0
o-cymene 1,3-Dichlorobenzene	N N	ug/kg ug/kg	10 10	< 10.0 < 10.0				
Butylbenzene	N N	ug/kg ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dibromo-3-chloropropane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Hexachlorobutadiene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1-2-3 - Trichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Naphthalene	N	ug/kg	10	< 10.0	193	< 10.0	191	< 10.0
1-2-4 - Trichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,4-Dichlorobenzene	N N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dichlorobenzene	N N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromoform	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
VOC TIC								
Various	N N	ug/kg	10	None Detected		Y 12	Y	None Detected
Naphthalene, 1-methyl-	N	ug/kg	10	-	31.79	< 10	< 10	-

Report No.: 18-18532										
		ELAB	Reference	142892	142908	142927	142929	142979	142989	142998
	Cu	stomer	Reference							
			Sample ID							
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	WS02	WS05	WS09	WS09	TP18	TP24	TP27
			Depth (m)	2.70	3.50	1.50	3.50	1.00	1.50	1.00
	`									
			pling Date	10/07/2018	05/07/2018	05/07/2018	05/07/2018	09/07/2018	05/07/2018	09/07/2018
Determinand	Codes	Units	LOD							
SVOC										
Phenol	N	mg/kg	0.01	< 0.01	< 0.01	0.06	0.03	0.03	g < 0.01	< 0.01
Aniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Bis(2-chloroethyl)ether	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
2-Chlorophenol 1,3-Dichlorobenzene	N N	mg/kg	0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	g < 0.01 g < 0.01	< 0.01 < 0.01
1,4-Dichlorobenzene	N	mg/kg mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Benzyl Alcohol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
1,2-Dichlorobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
2-Methylphenol	N	mg/kg	0.01	< 0.01	< 0.01	0.03	0.02	0.02	g < 0.01	< 0.01
Bis(2-chloroisopropyl)ether	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
3 and 4-methylphenol	N	mg/kg	0.01	< 0.01	< 0.01	0.13	0.08	0.08	g < 0.01	< 0.01
N-Nitrosodi-n-propylamine	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Hexachloroethane Nitroboggogo	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Nitrobenzene Isophorone	N N	mg/kg mg/kg	0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	g < 0.01 g < 0.01	< 0.01 < 0.01
2-Nitrophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
2,4-Dimethylphenol	N	mg/kg	0.01	< 0.01	< 0.01	0.11	0.06	0.07	g < 0.01	< 0.01
Bis(2-chloroethoxy)methane	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
2,4-Dichlorophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
1,3,5-Trichlorobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Naphthalene	N	mg/kg	0.01	0.05	0.02	1.14	0.61	0.20	g 0.28	0.14
3-Chloroaniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Hexachloro-1,3-butadiene 4-Chloro-3-methylphenol	N N	mg/kg	0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	g < 0.01 g < 0.01	< 0.01 < 0.01
2-Methylnaphthalene	N	mg/kg mg/kg	0.01	< 0.01	< 0.01	0.57	0.53	0.13	g 0.01	0.12
1-Methylnaphthalene	N	mg/kg	0.01	< 0.01	0.01	0.80	1.20	0.13	g 0.11	0.12
Hexachlorocyclopentadiene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
2,4,6-Trichlorophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
2,4,5-Trichlorophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
1-Chloronaphthalene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
2-Nitroaniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
1,4-Dinitrobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Dimethyl phthalate 1-3-dinitrobenzene	N N	mg/kg	0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	g < 0.01	< 0.01 < 0.01
2-6-dinitrotoluene	N	mg/kg mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01 g < 0.01	< 0.01
Acenaphthylene	N	mg/kg	0.01	< 0.01	< 0.01	1.98	1.69	1.92	g 0.34	0.09
1,2-Dinitrobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
3-Nitroaniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Acenaphthene	N	mg/kg	0.01	0.89	0.04	3.03	7.38	2.21	g 0.17	0.22
4-nitrophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Dibenzofuran	N	mg/kg	0.01	0.11	0.02	2.02	3.19	1.81	g 0.14	0.14
2,3,5,6-Tetrachlorophenol	N N	mg/kg	0.01	< 0.01 < 0.01	< 0.01 < 0.01	0.01	< 0.01 < 0.01	< 0.01 < 0.01	g < 0.01	< 0.01 < 0.01
2,3,4,6-Tetrachlorophenol Diethyl phthalate	N	mg/kg mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01 g < 0.01	< 0.01
1-chloro-4-phenoxybenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Fluorene	N	mg/kg	0.01	0.95	0.04	3.71	6.63	3.93	g 0.23	0.25
4-Nitroaniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Dinitro-o-cresol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Diphenylamine	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Azobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
1-bromo-4-phenoxybenzene Hexachlorobenzene	N N	mg/kg	0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	g < 0.01	< 0.01 < 0.01
Pentachlorophenol	N	mg/kg mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01 g < 0.01	< 0.01
Phenanthrene	N	mg/kg	0.01	0.95	0.31	24.8	34.5	34.4	g 1.93	1.10
Anthracene	N	mg/kg	0.01	0.42	0.08	7.51	10.5	15.4	g 0.58	0.27
Carbazole	N	mg/kg	0.01	< 0.01	< 0.01	2.87	4.16	3.03	g 0.13	0.12
Dibutyl phthalate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Fluoranthene	N	mg/kg	0.01	6.05	0.48	44.3	58.1	103	g 5.32	1.64
Pyrene	N	mg/kg	0.01	4.60	0.45	38.9	48.0	94.3	g 4.68	1.40
Butyl benzyl phthalate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Bis-2-ethylhexyladipate Butyl benzyl phthalate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Benzo(a)anthracene	N N	mg/kg mg/kg	0.01	< 0.01 1.38	< 0.01 0.18	< 0.01 21.7	< 0.01 22.0	< 0.01 40.6	g < 0.01 g 2.25	< 0.01 0.63
Chrysene	N	mg/kg	0.01	1.44	0.16	21.7	21.6	42.1	g 2.25 g 2.63	0.63
Bis(2-ethylhexyl)phthalate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	g < 0.01	< 0.01
Benzo(b)fluoranthene	N	mg/kg	0.01	1.21	0.16	17.6	19.5	38.0	g 2.57	0.51
Benzo(k)fluoranthene	N	mg/kg	0.01	1.01	0.19	20.8	17.7	37.1	g 2.29	0.53
Benzo(a)pyrene	N	mg/kg	0.01	1.10	0.17	24.0	22.3	40.7	g 2.70	0.60
Indeno(1,2,3-cd)pyrene	N	mg/kg	0.01	0.56	0.11	13.8	13.2	25.1	g 1.44	0.35
Dibenz(ah)anthracene	N	mg/kg	0.01	0.22	0.04	5.78	5.39	11.1	g 0.57	0.14
Benzo[g,h,i]perylene	N	mg/kg	0.01	0.70	0.15	15.5	15.3	29.8	g 1.82	0.42

	_		Reference		142908	142927	142929	142979	142989	142998
	C	ustome	Reference							
			Sample ID		COII	COII	SOIL	SOIL	COII	SOIL
			ample Type		SOIL WS05	SOIL WS09	WS09	TP18	SOIL TP24	TP27
			ole Location		3.50	1.50	3.50	1.00		1.00
			e Depth (m) npling Date		05/07/2018				1.50 05/07/2018	
Determinand	Code	s Units	 	10/07/2018	03/07/2016	03/07/2018	03/07/2016	09/07/2016	03/07/2018	09/07/2016
SVOC	Coue	5 Oilita	I LOD							
SVOCTIC										
Various	N	mg/k	0.01	Y	Y	Y	Y	Y	g Y	Y
TIC		III g/II	91 0.01	<u> </u>	· ·	·	·	·	_ y .	<u> </u>
(-)-1-Methylcholanthrene	N	mg/k	0.01	-	-	5.89	-	-	-	-
1(2H)-Naphthalenone, octahydro-, trans-	N	mg/k	0.01	-	-	-	0.18	-	-	-
1(2H)-Phenanthrenone, 3,4,9,10-tetrahydro-7-methoxy-	N	mg/k		-	-	- 6.07	- 0.40	-	10.63	-
1,1'-Binaphthalene 1,1'-Binaphthalene, 2,2'-dibromo-	N N	mg/k		-	-	6.97	8.49	-	-	-
1,1'-Biphenyl, 2',3,4-trichloro-	N	mg/k		-	0.33	-	-	-	-	-
1,1'-Biphenyl, 2,2',4,4'-tetrachloro-	N	mg/k	0.01	-	0.69	-	-	-	-	-
1,1'-Biphenyl, 2,2',5,5'-tetramethyl-	N N	mg/k		-	- 0.60	-	4.1	-	-	-
1,1'-Biphenyl, 2,2',6,6'-tetrachloro- 1,1'-Biphenyl, 2,3,4',6-tetrachloro-	N	mg/k		-	0.62		-	-	-	-
1,1'-Biphenyl, 2,4,6-trichloro-	N	mg/k		-	0.42	-	-	-	-	-
1,1'-Biphenyl, 2-methyl-	N	mg/k	0.01	-	-	-	-	1.3	-	-
1,1'-Biphenyl, 3,3',4,4'-tetrachloro-	N N	mg/k		-	1.18	-	-	-	-	-
1,1'-Biphenyl, 3-azido- 1,1,4a-Trimethyl-5,6-dimethylenedecahydronaphthalene	N	mg/k		-	-		-	5.67	-	-
1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester	N	mg/k	0.01	-	-	-	-	-	-	-
1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl ester	N	mg/k	0.01	-	-	-	-	-	-	-
1,2:3,4-Dibenzopyrene 1,3,6-Octatriene, 3,7-dimethyl-, (Z)-	N N	mg/k		-	-	-	-	-	4.09	-
1,3,6-Octatriene, 3,7-dimethyl-, (2)- 1,3-Cyclohexadiene, 2,6,6-trimethyl-1-(3-methyl-1,3-butadienyl)-	N	mg/k		-	-	-	2.23	-	-	-
1,4-Methanonaphthalene,1,4-dihydro-9-((1-methylethylidene)-	N	mg/k	0.01	-	-	-	3.43	-	-	-
1-(2-Aminobenzylidene)-1,2,3,4-tetrahydroacridine N-oxide	N	mg/k	0.01	-	-	-	-	-	-	4.86
1-Methyl-4-ethyl 2-phenylsuccinate 1-Naphthalenecarboxylic acid, 2-benzoyl-	N N	mg/k		-	-	6.02	7.22	-	1.11	-
11-Naphthalenecarboxylic acid, 2-benzoyl- 11H-Benzo[a]fluoren-11-one	N	mg/k		-	-	7.25	- 1.22	-	17.93	-
11H-Benzo[a]fluorene	N	mg/k		-	-	-	-	-	-	-
11H-Benzo[b]fluorene	N	mg/k		-	-	-	6.42	11.02	-	-
1H-Cyclopropa[I]phenanthrene,1a,9b-dihydro- 1H-Inden-1-one, 2-(2,3-dihydro-1H-inden-1-ylidene)-2,3-dihydro-	N N	mg/k		-	-	-	4.85	5.35 10.66	-	-
2,4,6-Cycloheptatrien-1-one, 2-phenyl-	N	mg/k		-	-		-	-	-	-
2,6-Dibromo-4-methylaniline	N	mg/k	0.01	-	-	-	-	8.23	-	-
2,9-Dimethyl-2,3,4,5,6,7-hexahydro-1H-2-benzazonine	N	mg/k		-	-	-	-	7.23	-	-
2-(Acetoxymethyl)-3-(methoxycarbonyl)biphenylene 2-Cyclopropen-1-one, 2,3-diphenyl-	N N	mg/k		-	-	-	-	-	-	-
2-Fluorenamine	N	mg/k		-	-		-	3.23	-	-
2-Hydroxyfluorene	N	mg/k		-	-	-	2.32	-	-	-
2-Methyl-5,5-diphenyl-4-(methylthio)imidazole	N	mg/k		-	-	-	-	-	2.88	-
2-[2-Quinolyl]methylene quinuclidin-3-ol 2-p-Nitrophenyl-oxadiazol-1,3,4-one-5	N N	mg/k		-	0.48	-	-	-	-	-
3,4:8,9-Dibenzopyrene	N	mg/k		-	-	-	-	-	-	-
3,4:9,10-Dibenzopyrene	N	mg/k	0.01	-	-	-	-	-	-	5.05
3,5,6-Trimethyl-p-quinone, 2-(2,5-dioxotetrahydrofuran-3-yl)thio-	N	mg/k		- 4.00	1.43	- 7.00	8.48	-	7.2	3.14
3,5-Cyclohexadiene-1,2-dione, 3,4,5,6-tetrachloro- 3-(2-Chloro-4-nitro-phenyl)-2-methyl-3H-quinazolin-4-one	N N	mg/k		1.23	-	7.38 10.17	4.87	13.68	-	-
3-Bromo-5-ethoxy-4-hydroxybenzaldehyde	N	mg/k			-	8.66	-	14.11	-	-
3-Chloro-1-anthraquinonecarboxylic acid	N	mg/k	0.01	-	-	7.52	-	-	-	-
3-Chloro-N-hydroxy-N'-phenyl-benzamidine	N N	mg/k		-	-	-	6.15	1.73	-	-
3H-Benz[e]indene, 2-methyl- 4,4,6a,6b,8a,11,12,14b-Octamethyl-	IN	mg/k	0.01	-	-	-	-	1.73	-	-
1,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-octadecahydro-2H	N	mg/k	0.01							_
4,5-Isoxazoledione, 3-methyl-, 4-[(2-methylphenyl)hydrazone]	N	mg/k		-	0.1	-	-	-	-	-
4-(2-Chlorphenyl)-3-morpholin-4-yl-1H-pyrrole-2-carboxylic acid, methyl ester	N	mg/k		-	-	-	-	-	0.39	-
4-Methoxy-5-[4-methoxyphenoxy]-2-nitroaniline 4-Nitro-4'-chlorodiphenylsulfoxide	N N	mg/k		-	0.72	2.04	-	6.09	-	-
4H-Cyclopenta[def]phenanthrene	N	mg/k		-	- 0.72		16.66	15.83	-	-
5H-Indeno[1,2-b]pyridine	N	mg/k		-	-	-	6.62	4.8	-	-
7-Isopropenyl-1,4a-dimethyl-4,4a,5,6,7,8-hexahydro-3H-naphthalen-2-one	N	mg/k		7.74	-	-	-	-	-	-
9,10-Anthracenedione 9,10-Bis(bromomethyl)anthracene	N N	mg/k		-	-	-	5.08	3.94	0.85	-
9,10-Dimethylanthracene	N	mg/k		-	-	-	7.62	-	-	-
9-Anthracenecarbonitrile	N	mg/k	0.01	-	-	-	-	-	-	-
9-Cycloheptatrienylidene-9,10-dihydro-10-oxoanthracene 9H-Fluoren-9-ol	N	mg/k		-	-	1.48	-	4.00	-	-
9H-Fluorene, 1-methyl-	N N	mg/k		-	-	-	-	1.23	-	-
9H-Fluorene, 2-methyl-	N	mg/k		-	-	-	-	1.72	-	-
Ajmaline	N	mg/k	0.01	-	-	-	-	-	-	3.21
Anthracene, 1,4-dimethyl- Anthracene, 1-methyl-	N N	mg/k		-	-	-	-	6.33 4.28	-	-
Anthracene, 1-methyl-	N	mg/k		-	-	11.81	-	4.20	-	-
Antra-9,10-quinone, 1-(3-hydrohy-3-phenyl-1-triazenyl)-	N	mg/k	0.01	-	0.99	-	-	-	4.98	-
Azulene	N	mg/k		-	-	0.45	- 222	- 0.42	-	-
Azulene, 4,6,8-trimethyl- Benz(A)anthracene-7,12-dione	N N	mg/k		-	-	-	2.33	0.42 12.02	-	-
Benz[a]anthracene, 7-methyl-	N	mg/k		-	-		-	-	-	-
Benz[e]acephenanthrylene	N	mg/k	0.01	-	-	9.73	-		21.84	-
Benz[j]aceanthrylene, 3-methyl-	N	mg/k		-	-	8.23	-	6.63	-	-
Benzenamine, N-[4-(1-methylethyl)benzylidene]-4-(1-pyrrolidylsulfonyl)- Benzene, 1,1'-methylenebis[2-methyl-	N N	mg/k		-	-	-	-	-	-	-
Benzene, 1,2,3,4-tetramethyl-	N	mg/k		-	-	-	-	-	-	-
Benzene, 1,2-dimethyl-4-(phenylmethyl)-	N	mg/k	0.01	-	-	-	-	-	-	-
Benzene, 1,3-dimethyl-	N	mg/k		-	-	-	-	-	-	-
Benzene, 1-ethyl-2,3-dimethyl- Benzene, 1-ethynyl-4-methyl-	N N	mg/k		-	-	-	-	0.32	-	-
Benzene, 1-methyl-4-(1-methylethyl)-	N	mg/k		-	-	-	-		-	-
Benzenesulfonamide, 4-(2-hydroxy-5-nitrobenzylidenamino)-	N	mg/k	0.01	-	-	-	-	-	-	-
Benzo[a]pyrene, 4,5-dihydro-	N	mg/k		-	-	- 6 00		10.54	-	-
Benzo[b]naphtho[2,1-d]thiophene Benzo[b]naphtho[2,3-d]furan	N N	mg/k		—	-	6.88	6.58	10.51 5.7	-	-
and the state of t		1								

ELAB Reference 142892 142908 142927 142929 142979 142989 142998

Report No.: 18-18532										
		ELAB	Reference	142892	142908	142927	142929	142979	142989	142998
	Cu	ıstomer	Reference							
			Sample ID							
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Samp	e Location	WS02	WS05	WS09	WS09	TP18	TP24	TP27
		Sample	Depth (m)	2.70	3.50	1.50	3.50	1.00	1.50	1.00
			pling Date	10/07/2018	05/07/2018	05/07/2018	05/07/2018	09/07/2018	05/07/2018	09/07/2018
Determinand	Codes	Units	LOD							
SVOC		1 .								
Benzo[b]naphtho[2,3-d]thiophene Benzo[b]triphenylene	N N	mg/kg mg/kg	0.01	-	-	10.15	-	9.33	-	-
Benzo[e]pyrene	N	mg/kg	0.01	-	-	12.56	24.91	17.88	-	-
Benzo[g]pteridine-10(2H)-acetaldehyde, 3,4-dihydro-7,8-dimethyl-2,4-dioxo-	N	mg/kg	0.01	-	-	-	-	3.93	-	-
Benzo[kl]xanthene	N	mg/kg	0.01	-	-	-	4.03	-	-	-
Benzocycloheptatriene Benzonitrile, 2-(2-hydroxy-3,5-dichlorobenzylidenamino)-	N N	mg/kg mg/kg	0.01	-	-	-	-	-	-	-
Biphenylene	N	mg/kg	0.01	-	-	-	-	-	-	-
Caprolactam	N	mg/kg	0.01	-	-	-	-	-	0.44	-
Chrysene, 3 methyl	N N	mg/kg	0.01	-	-	6.41	3.97	-	-	-
Chrysene, 2-methyl- Chrysene, 4-methyl-	N	mg/kg mg/kg		-	-	- 0.41	4.49	-	-	-
Chrysene, 5-ethyl-	N	mg/kg	0.01	-	-	-	-	10.19	-	-
Chrysene, 6-methyl-	N	mg/kg	0.01	-	-	-	6.55	7.82	-	-
Copper 8-hydroxyquinolate Cyclodecacyclododecene, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18-octadecacyclododecene, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18-octadecacyclodoca	N N	mg/kg mg/kg	0.01	-	-	-	-	-	-	-
Cyclohexane, hexaethylidene-	N	mg/kg	0.01	-	-	9.04	-			-
Cyclohexane-1,3-dione, 2-allylaminomethylene-5,5-dimethyl-	N	mg/kg	0.01	-	-	-	-	-	-	-
Cyclopenta(cd)pyrene, 3,4-dihydro-	N	mg/kg	0.01	-	-	-	-	17.07	-	-
Cyclopenta(def)phenanthrenone Demecolcine	N N	mg/kg mg/kg	0.01	-	-	-	1.78	7.93	-	-
Dibenz(a,e)aceanthrylene	N	mg/kg	0.01	-	-	-	-	-	-	10.13
Dibenz[a,h]anthracene, 5,6-dihydro-	N	mg/kg	0.01	-	-	-	-	7.63	-	-
Dibenzo[a,e]cyclooctene	N	mg/kg		-	-	- 12.00	-	-	-	-
Dibenzo[b,e]7,8-diazabicyclo[2.2.2]octa-2,5-diene Dibenzofuran, 4-methyl-	N N	mg/kg mg/kg	0.01	-	-	12.68	-	-	-	-
Dibenzothiophene	N	mg/kg	0.01	-	-	2.54	4.83	3.27	-	-
Dibenzothiophene, 4-methyl-	N	mg/kg	0.01	-	-	-	-	-	-	-
Dichloroacetaldehyde Diethyl 1-(8-azido-1-naphthyl)-1H-1,2,3-triazole-4,5-dicarboxylate	N N	mg/kg	0.01	-	0.35	-	-	-	-	0.03
Diethyl Phthalate	N	mg/kg mg/kg	0.01	-	- 0.33		-	-	0.19	-
Ethane, 1,1,2,2-tetrachloro-	N	mg/kg	0.01	-	-	-	-	-	3.77	-
Fluoranthene, 2-methyl-	N	mg/kg	0.01	-	-	-	17.31	20.15	-	-
Heneicosane Heptacosane, 1-chloro-	N N	mg/kg mg/kg	0.01	2.7	-	-	-	-	-	-
Heptadecane, 2,6-dimethyl-	N	mg/kg	0.01	-	-	-	-	2.11	-	-
Hexadecane	N	mg/kg	0.01	-	-	-	-	-	-	-
Indene	N	mg/kg	0.01	-	-	-	0.39	-	-	-
Indeno[1,2,3-cd]fluoranthene Indeno[1,2,3-cd]pyrene	N N	mg/kg mg/kg	0.01	-	-	-	8.41	31.71	-	-
Indeno[2,1-a]indene, 5,10-dihydro-	N	mg/kg	0.01	-	-	-	-	-	-	-
N-(4-Methoxyphenyl)-2-hydroxyimino-acetamide	N	mg/kg	0.01	-	-	-	-	-	-	-
Naphthalene, 1,2,3,4-tetrahydro-1,6-dimethyl-4-(1-methylethyl)-, (1S-cis)-	N N	mg/kg	0.01	-	-	-	0.74	-	-	-
Naphthalene, 1,2-dihydro-1-phenyl- Naphthalene, 1,3-dimethyl-	N	mg/kg mg/kg	0.01	-	-	-	-	-		-
Naphthalene, 1,4-dimethyl-	N	mg/kg	0.01	-	-	-	-	0.39	-	-
Naphthalene, 1,5-dimethyl-	N	mg/kg	0.01	-	-	-	-	-	-	-
Naphthalene, 1,6,7-trimethyl-	N N	mg/kg	0.01	-	-	0.39	4.78	0.16	-	-
Naphthalene, 1,7-dimethyl-	N	mg/kg mg/kg	0.01	-	-	- 0.39	4.70	-		-
Naphthalene, 1,8-dimethyl-	N	mg/kg	0.01	-	-	0.83	-	-	-	-
Naphthalene, 1-methyl-	N	mg/kg	0.01	-	-	0.59	-	-	-	-
Naphthalene, 2,3,6-trimethyl- Naphthalene, 2,6-dimethyl-	N N	mg/kg mg/kg	0.01	-	-	-	4.03	1.15	-	-
Naphthalene, 2,7-dimethyl-	N	mg/kg	0.01	-	-	-	1.74	-		-
Naphthalene, 2-ethenyl-	N	mg/kg	0.01	-	-	0.15	-	-	-	-
Naphthalene, 2-methyl-	N	mg/kg	0.01	-	-	0.25	1.48	-	-	-
Naphthalene, 2-phenyl- Naphtho[1,2-a]anthracene	N N	mg/kg mg/kg	0.01	-	-	-	4.33	7.37	-	-
Naphtho[2,1-b]furan, 1,2-dimethyl-	N	mg/kg		-	-	-	-	1.43	-	-
Nonadecane	N	mg/kg	0.01	-	-	-	-	-	-	-
Nonane, 2,6-dimethyl-	N	mg/kg	0.01	-	-	-	-	-	-	-
Pentadecane Pentadecane, 2,6,10,14-tetramethyl-	N N	mg/kg mg/kg	0.01	-	-	-	-	-	-	-
Perimidine, 2-ethyl-	N	mg/kg	0.01	-	-	-	-	-	-	-
Perylene	N	mg/kg	0.01	-	-	-	-	-	-	-
Phenanthrene, 1,7-dimethyl- Phenanthrene, 1-methyl-	N N	mg/kg mg/kg	0.01	-	-	-	3.94	6.84	-	-
Phenanthrene, 2-methyl-	N	mg/kg	0.01	-	-	-		-	-	-
Phenanthrene, 4,5-dimethyl-	N	mg/kg	0.01	-	-	-	-	3.27	-	-
Phenanthro[1,2-b]furan-10,11-dione, 6,7,8,9-tetrahydro-6-(hydroxymethyl)-1,6-di		mg/kg	0.01	-	-	-	-	6.55	-	-
Pregnan-20-one, (5.alpha.)- Pyrene	N N	mg/kg mg/kg	0.01	-	-	-	-	-	6.53	7.7
Pyrene, 1,3-dimethyl-	N	mg/kg mg/kg		-	-	-	14.99	16.88	- 6.53	-
Pyrene, 1-methyl-	N	mg/kg	0.01	-	-	8.6	9.15	9.54	-	-
Pyrene, 4-methyl-	N	mg/kg	0.01	-	-	-	9.54	-	-	-
Quinoxaline, 6-(3-nitrobenzylidenamino)- Spiro[benzofuran-2(3H),2'-oxiran]-3-one, 6-methoxy-3'-phenyl-	N N	mg/kg mg/kg	0.01	-	-	-	9.97	6.47	-	-
Stigmasterol, 22,23-dihydro-	N	mg/kg	0.01	5.64	-	-	-	- 6.47		-
Tetradecane	N	mg/kg	0.01	-	-	-	-	0.16	-	-
Tricyclo[8.2.2.2(4,7)]hexadeca-2,4,6,8,10,12,13,15-octaene	N	mg/kg		-	-	-	-	-	-	-
Triphenylene Tungsten, pentacarbonyl(pyridazine-N1)-, (OC-6-22)-	N N	mg/kg mg/kg		-	-	19.95	20.97 7.15	40.48	12.03	-
[1,1'-Biphenyl]-4-carboxaldehyde	N	mg/kg	0.01	-	-	-		1.46	<u> </u>	-
[14]Annulene, 1,6:8,13-bis(methano)-, syn	N	mg/kg	0.01	-	-	-	-	-	-	-
n-Pentafluorosulfanyl-S,S-diphenoxysufilimine	N	mg/kg	0.01	-	-	-	-	6.9	-	-

Report No.: 18-18532											
		ELAB	Reference	143001	143004	143008	143016	143023	143030	143032	143040
	Cu	ıstomer	Reference								
			Sample ID								
		Sa	mple Type	SOIL							
		Samp	le Location	TP29	TP30	TP31	TP35	TP37	TP39	TP40	TP43
			Depth (m)	1.50	2.50	2.50	1.30	2.00	1.70	1.00	1.90
		-	pling Date		05/07/2018			1	10/07/2018		-
Determinand	Codes	Units	LOD	10/01/2010	00/01/2010	00/01/2010	11/01/2010	03/01/2010	10/01/2010	03/01/2010	11/01/2010
SVOC	Codes	Units	LOD								
	l NI		0.04	< 0.01	0.15	. 0.01	< 0.01	- 0.01	0.04	0.00	. 0.01
Phenol Aniline	N N	mg/kg mg/kg		< 0.01	0.15 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	< 0.04	0.02 < 0.01	< 0.01 < 0.01
Bis(2-chloroethyl)ether	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-Chlorophenol	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-Dichlorobenzene	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-Dichlorobenzene	N	mg/kg	0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzyl Alcohol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-Dichlorobenzene	N	mg/kg	0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	0.30	< 0.01	< 0.01
2-Methylphenol	N	mg/kg	0.01	< 0.01	0.05	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bis(2-chloroisopropyl)ether 3 and 4-methylphenol	N N	mg/kg mg/kg	0.01	< 0.01 < 0.01	< 0.01 0.13	< 0.01 < 0.01	< 0.01 0.02	< 0.01 < 0.01	< 0.01 0.08	< 0.01 0.02	< 0.01 < 0.01
N-Nitrosodi-n-propylamine	N	mg/kg		< 0.01	< 0.13	< 0.01	< 0.02	< 0.01	< 0.01	< 0.02	< 0.01
Hexachloroethane	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Isophorone	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-Nitrophenol	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dimethylphenol	N	mg/kg	0.01	< 0.01	0.08	< 0.01	< 0.01	< 0.01	< 0.01	0.06	< 0.01
Bis(2-chloroethoxy)methane 2,4-Dichlorophenol	N N	mg/kg	0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01
1,3,5-Trichlorobenzene	N	mg/kg	0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01
Naphthalene	N	mg/kg mg/kg	0.01	0.12	1.42	0.07	0.18	1.02	2.09	3.57	0.09
3-Chloroaniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachloro-1,3-butadiene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-Chloro-3-methylphenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-Methylnaphthalene	N	mg/kg	0.01	0.09	1.00	0.02	0.06	0.58	1.49	0.99	0.05
1-Methylnaphthalene	N	mg/kg	0.01	0.10	0.61	0.02	0.05	0.35	2.86	1.02	0.05
Hexachlorocyclopentadiene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	N N	mg/kg	0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01
1-Chloronaphthalene	N	mg/kg mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-Nitroaniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-Dinitrobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dimethyl phthalate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1-3-dinitrobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-6-dinitrotoluene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	N	mg/kg		0.43	0.42	0.42	0.66	0.08	0.34	0.65	0.14
1,2-Dinitrobenzene 3-Nitroaniline	N N	mg/kg mg/kg	0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01
Acenaphthene	N	mg/kg	0.01	0.41	0.90	0.08	0.15	0.87	7.70	1.45	0.34
4-nitrophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzofuran	N	mg/kg	0.01	0.17	1.09	0.05	0.13	0.46	4.18	1.35	0.11
2,3,5,6-Tetrachlorophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,3,4,6-Tetrachlorophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Diethyl phthalate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1-chloro-4-phenoxybenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene 4-Nitroaniline	N N	mg/kg mg/kg	0.01	0.38	1.36	0.11 < 0.01	0.34 < 0.01	0.59 < 0.01	6.04 < 0.01	1.41	0.27 < 0.01
Dinitro-o-cresol	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Diphenylamine	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Azobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1-bromo-4-phenoxybenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pentachlorophenol Phononthropo	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene Anthracene	N N	mg/kg mg/kg		3.12 0.93	5.48 1.60	1.77 0.79	2.78 0.92	1.76 0.34	16.2 2.66	7.17 1.90	1.24 0.36
Carbazole	N	mg/kg		0.93	0.55	< 0.01	0.92	0.34	1.26	1.02	0.08
Dibutyl phthalate	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	N	mg/kg	0.01	7.90	5.91	5.41	8.10	1.79	11.3	11.5	3.22
Pyrene	N	mg/kg	0.01	6.49	5.25	4.62	7.32	1.36	8.10	10.1	2.75
Butyl benzyl phthalate	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bis-2-ethylhexyladipate	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	N N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene Chrysene	N N	mg/kg mg/kg		2.91 3.20	2.44	2.28 2.45	4.01 4.28	0.44	2.48 2.50	5.93 5.50	1.41
Bis(2-ethylhexyl)phthalate	N	mg/kg		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	N	mg/kg		3.14	2.26	1.51	4.53	0.31	1.57	4.65	1.37
Benzo(k)fluoranthene	N	mg/kg	0.01	2.61	2.18	2.33	4.19	0.37	1.75	4.82	1.35
Benzo(a)pyrene	N	mg/kg	0.01	3.08	2.60	2.40	4.91	0.40	1.87	6.34	1.46
Indeno(1,2,3-cd)pyrene	N	mg/kg		1.70	1.65	1.48	2.85	0.24	1.04	3.72	0.84
Dibenz(ah)anthracene	N	mg/kg		0.64	0.71	0.61	1.19	0.09	0.47	1.50	0.38
Benzo[g,h,i]perylene	N	mg/kg	0.01	2.23	1.92	1.68	3.25	0.29	1.21	4.31	0.95

	0		Reference		143004	143008	143016	143023	143030	143032	143040
	Ci	ustomer	Reference Sample ID								
		٠.			SOIL	SOIL	COII	SOIL	SOIL	SOIL	SOIL
			imple Type	SOIL TP29	TP30	TP31	SOIL TP35	TP37	TP39	TP40	TP43
			le Location Depth (m)		2.50	2.50	1.30	2.00	1.70	1.00	1.90
			npling Date				11/07/2018			09/07/2018	
Determinand	Codes	Units		10/0//2010	00/01/2010	00/07/2010	11/01/2010	03/01/2010	10/01/2010	03/01/2010	11/01/2010
SVOC	Todass	7 0	1 202								
SVOCTIC											
Various	N	mg/kg	0.01	Y	Y	Y	Y	Y	Y	Y	Y
TIC											
(-)-1-Methylcholanthrene	N	mg/kg		-	-	-	-	-	-	-	-
1(2H)-Naphthalenone, octahydro-, trans- 1(2H)-Phenanthrenone, 3,4,9,10-tetrahydro-7-methoxy-	N N	mg/kg mg/kg		-	-	-	-	-	-	-	3.82
1,1'-Binaphthalene	N	mg/kg		-	-	-		-	-	-	- 3.02
1,1'-Binaphthalene, 2,2'-dibromo-	N	mg/kg	0.01	-	-	-	-	-	4.33	-	-
1,1'-Biphenyl, 2',3,4-trichloro- 1,1'-Biphenyl, 2,2',4,4'-tetrachloro-	N N	mg/kg mg/kg		-	-	-	-	-	-	-	-
1,1'-Biphenyl, 2,2',5,5'-tetramethyl-	N	mg/kg		-	-	-	-	-	-	0.47	-
1,1'-Biphenyl, 2,2',6,6'-tetrachloro-	N	mg/kg	0.01	-	-	-	-	-	-	-	-
1,1'-Biphenyl, 2,3,4',6-tetrachloro- 1,1'-Biphenyl, 2,4,6-trichloro-	N N	mg/kg mg/kg		-	-	-	-	-	-	-	-
1,1'-Biphenyl, 2-methyl-	N	mg/kg		-	-	-		-	-	-	-
1,1'-Biphenyl, 3,3',4,4'-tetrachloro-	N	mg/kg	0.01	-	-	-	-	-	-	-	-
1,1'-Biphenyl, 3-azido- 1,1,4a-Trimethyl-5,6-dimethylenedecahydronaphthalene	N N	mg/kg		-	-	-	-	-	4.35	-	-
1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester	N	mg/kg		-	-	-	-	-	-	0.39	-
1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl ester	N	mg/kg	0.01	-	3.29	-	-	-	-	-	-
1,2:3,4-Dibenzopyrene	N N	mg/kg		-	6.52	-	-	0.19	-	-	-
1,3,6-Octatriene, 3,7-dimethyl-, (Z)- 1,3-Cyclohexadiene, 2,6,6-trimethyl-1-(3-methyl-1,3-butadienyl)-	N	mg/kg mg/kg		-	-	-	-	0.19	-	-	-
1,4-Methanonaphthalene,1,4-dihydro-9-((1-methylethylidene)-	N	mg/kg	0.01	-	-	-	-	-	-	-	-
1-(2-Aminobenzylidene)-1,2,3,4-tetrahydroacridine N-oxide	N	mg/kg		-	-	-	-	-	-	-	-
1-Methyl-4-ethyl 2-phenylsuccinate 1-Naphthalenecarboxylic acid, 2-benzoyl-	N N	mg/kg mg/kg		-	-	-	-	-	5.26	-	3.4
11H-Benzo[a]fluoren-11-one	N	mg/kg	0.01	-	-	-	-	-	-	-	-
11H-Benzo[a]fluorene	N	mg/kg		-	5.29	-	-	-	-	4.07	-
11H-Benzo[b]fluorene 1H-Cyclopropa[i]phenanthrene,1a,9b-dihydro-	N N	mg/kg mg/kg		-	-	-	-	-	2.69	2.9	-
1H-Inden-1-one, 2-(2,3-dihydro-1H-inden-1-ylidene)-2,3-dihydro-	N	mg/kg		-	-	-	-	-	-	-	-
2,4,6-Cycloheptatrien-1-one, 2-phenyl-	N	mg/kg		-	-	-	-	-	-	0.39	-
2,6-Dibromo-4-methylaniline 2,9-Dimethyl-2,3,4,5,6,7-hexahydro-1H-2-benzazonine	N N	mg/kg mg/kg		-	-	-	-	-	-	-	-
2-(Acetoxymethyl)-3-(methoxycarbonyl)biphenylene	N	mg/kg		-	7.03	1.56	-	-	-	-	-
2-Cyclopropen-1-one, 2,3-diphenyl-	N	mg/kg		-	3.23	-	-	-	-	-	-
2-Fluorenamine 2-Hydroxyfluorene	N N	mg/kg mg/kg		-	-	-	-	-	-	-	-
2-Methyl-5,5-diphenyl-4-(methylthio)imidazole	N	mg/kg		-	-	-	-	-	-	-	-
2-[2-Quinolyl]methylene quinuclidin-3-ol	N	mg/kg		-	-	-	0.2	-	-	-	-
2-p-Nitrophenyl-oxadiazol-1,3,4-one-5 3,4:8,9-Dibenzopyrene	N N	mg/kg		-	- 5.13	-	-	-	-	-	-
3,4:9,10-Dibenzopyrene	N	mg/kg		-	3.68	-	-	-	-	-	-
3,5,6-Trimethyl-p-quinone, 2-(2,5-dioxotetrahydrofuran-3-yl)thio-	N	mg/kg		-	7.84	3.56	-	-	-	4.21	2.52
3,5-Cyclohexadiene-1,2-dione, 3,4,5,6-tetrachloro- 3-(2-Chloro-4-nitro-phenyl)-2-methyl-3H-quinazolin-4-one	N N	mg/kg		-	-	-	-	-	-	-	-
3-Bromo-5-ethoxy-4-hydroxybenzaldehyde	N	mg/kg		5.66	-	-	-	-	-	-	-
3-Chloro-1-anthraquinonecarboxylic acid	N	mg/kg	0.01	-	-	-	-	-	-	-	-
3-Chloro-N-hydroxy-N'-phenyl-benzamidine 3H-Benz[e]indene, 2-methyl-	N N	mg/kg		-	-	-	-	-	-	-	-
4,4,6a,6b,8a,11,12,14b-Octamethyl-	- ''	IIIg/Kg	0.01	-	_	-	_		_	_	
1,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-octadecahydro-2H	N	mg/kg	0.01	-	-	-	2.71	-	-	-	-
4,5-Isoxazoledione, 3-methyl-, 4-[(2-methylphenyl)hydrazone]	N	mg/kg	0.01	-	-	-	-	-	-	-	-
4-(2-Chlorphenyl)-3-morpholin-4-yl-1H-pyrrole-2-carboxylic acid, methyl ester 4-Methoxy-5-[4-methoxyphenoxy]-2-nitroaniline	N N	mg/kg mg/kg		-	-	-	-	-	-	-	-
4-Nitro-4'-chlorodiphenylsulfoxide	N	mg/kg		-	-	3.84	-	-	-	-	2.03
4H-Cyclopenta[def]phenanthrene	N	mg/kg		-	-	-	0.91	-	-	2.79	0.53
5H-Indeno[1,2-b]pyridine 7-Isopropenyl-1,4a-dimethyl-4,4a,5,6,7,8-hexahydro-3H-naphthalen-2-one	N N	mg/kg mg/kg		-	-	-	-	-	-	1.32	-
9,10-Anthracenedione	N	mg/kg		1.77	-	-	-	-	-	-	-
9,10-Bis(bromomethyl)anthracene	N	mg/kg		-	-	0.46	-	-	-	-	-
9,10-Dimethylanthracene 9-Anthracenecarbonitrile	N N	mg/kg mg/kg		1.97	-	-	-	-	6.63	-	-
9-Cycloheptatrienylidene-9,10-dihydro-10-oxoanthracene	N	mg/kg		-	-	-	-	-	-	-	-
9H-Fluoren-9-ol	N	mg/kg		-	-	-	-	-	3.34	0.52	0.16
9H-Fluorene, 1-methyl- 9H-Fluorene, 2-methyl-	N N	mg/kg mg/kg		0.4	0.6	-	-	-	-	-	-
Ajmaline	N	mg/kg			-	-	-	-	-	-	
Anthracene, 1,4-dimethyl-	N	mg/kg		-	-	-	-	-	-	-	-
Anthracene, 1-methyl- Anthracene, 2-methyl-	N N	mg/kg mg/kg		-	-	-	-	-	2.63	-	-
Antra-9,10-quinone, 1-(3-hydrohy-3-phenyl-1-triazenyl)-	N	mg/kg		-	2.34	0.35	-	-	0.58	0.83	1.17
Azulene	N	mg/kg	0.01	-	-	-	-	-	-	-	-
Azulene, 4,6,8-trimethyl- Benz(A)anthracene-7,12-dione	N N	mg/kg mg/kg		0.24	-	-	-	-	2.87	-	-
Benz[a]anthracene, 7-methyl-	N	mg/kg		3.49	-	-	-	-	-	-	-
Benz[e]acephenanthrylene	N	mg/kg	0.01	-	5.44	-	-	-	-	-	-
Benz[j]aceanthrylene, 3-methyl- Benzenamine, N-[4-(1-methylethyl)benzylidene]-4-(1-pyrrolidylsulfonyl)-	N N	mg/kg mg/kg		10.91	-	-	-	-	-	-	-
Benzenamine, N-[4-(1-metnyletnyl)benzylidenej-4-(1-pyrrollayisulfonyl)- Benzene, 1,1'-methylenebis[2-methyl-	N	mg/kg		0.33	-	-	-	-	-	-	-
Benzene, 1,2,3,4-tetramethyl-	N	mg/kg	0.01	-	-	-	-	-	0.39	-	-
Benzene, 1,2-dimethyl-4-(phenylmethyl)- Benzene, 1,3-dimethyl-	N N	mg/kg mg/kg		0.15	0.25	-	-	-	2.23	-	-
Benzene, 1-ethyl-2,3-dimethyl-	N	mg/kg		- 0.15	- 0.25	-		-	1.18	-	-
Benzene, 1-ethynyl-4-methyl-	N	mg/kg	0.01	-	-	-	-	-	-	-	-
Benzene, 1-methyl-4-(1-methylethyl)- Benzenesulfonamide, 4-(2-hydroxy-5-nitrobenzylidenamino)-	N N	mg/kg		-	-	-	-	4.78	1.6	-	-
Benzo[a]pyrene, 4,5-dihydro-	N	mg/kg		4.85	-	-	-	4.78	-	-	-
Benzo[b]naphtho[2,1-d]thiophene	N	mg/kg	0.01	4.18	-	-	-	-	-	2.45	-
Benzo[b]naphtho[2,3-d]furan	N	mg/kg	0.01	-	-	-	-	-	-	-	-

ELAB Reference 143001 143004 143008 143016 143023 143030 143032 143040

Determinand SVOC Denzo[b]naphtho[2,3-d]thiophene Benzo[b]triphenylene		ustomer Sa	Reference Reference Sample ID ample Type	143001	143004	143008	143016	143023	143030	143032	143040
SVOC enzo[b]naphtho[2,3-d]thiophene		Sa	Sample ID	2011							
SVOC enzo[b]naphtho[2,3-d]thiophene				0011					1		
SVOC enzo[b]naphtho[2,3-d]thiophene			ample Type								
SVOC enzo[b]naphtho[2,3-d]thiophene		Samr		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SVOC enzo[b]naphtho[2,3-d]thiophene			le Location	TP29	TP30	TP31	TP35	TP37	TP39	TP40	TP43
SVOC enzo[b]naphtho[2,3-d]thiophene			Depth (m)	1.50	2.50	2.50	1.30	2.00	1.70	1.00	1.90
SVOC enzo[b]naphtho[2,3-d]thiophene		_	npling Date	10/07/2018	05/07/2018	05/07/2018	11/07/2018	09/07/2018	10/07/2018	09/07/2018	11/07/2018
Senzo[b]naphtho[2,3-d]thiophene	Codes	Units	LOD								
		1 .									
	N	mg/kg		-	-	-	-	-	6.49	- 0.05	-
Benzo[e]pyrene	N N	mg/kg mg/kg		2.67 7.14	-	-	5.35	-	-	2.35 5.92	3.88
Benzo[g]pteridine-10(2H)-acetaldehyde, 3,4-dihydro-7,8-dimethyl-2,4-dioxo-	N	mg/kg		-	-	-	-	-	-	-	-
Benzo[kl]xanthene	N	mg/kg		-	-	-	-	-	-	-	-
Senzocycloheptatriene	N	mg/kg		-	-	-	-	0.34	-	-	-
Benzonitrile, 2-(2-hydroxy-3,5-dichlorobenzylidenamino)- Biphenylene	N N	mg/kg mg/kg		1.21 0.69	-	0.36	-	-	-	-	-
Caprolactam	N	mg/kg		- 0.03	-	0.29	0.67	-	-	0.66	-
Chrysene, 1-methyl-	N	mg/kg		11.66	-	-	2.45	-	-	-	-
Chrysene, 2-methyl-	N	mg/kg		-	-	-	-	-	-	3.12	-
Chrysene, 4-methyl-	N	mg/kg		-	-	-	-	-	-	-	-
Chrysene, 5-ethyl- Chrysene, 6-methyl-	N N	mg/kg mg/kg		-	-	-		-	-	-	-
Copper 8-hydroxyquinolate	N	mg/kg		-	-	-	3.21	-	-	-	-
Cyclodecacyclododecene, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18-octadeca		mg/kg	0.01	-	4.49	5.5	-	-	-	2.67	4.21
Cyclohexane, hexaethylidene-	N	mg/kg		-		- 0.50	-	-	- 4.00	-	-
Cyclohexane-1,3-dione, 2-allylaminomethylene-5,5-dimethyl- Cyclopenta(cd)pyrene, 3,4-dihydro-	N N	mg/kg mg/kg		-	-	0.59	-	-	1.62	-	0.91
Cyclopenta(co)pyrene, 3,4-dinydro- Cyclopenta(def)phenanthrenone	N	mg/kg		-	-	-		-	-	-	-
Demecolcine	N	mg/kg		-	-	-	-	-	-	-	-
Dibenz(a,e)aceanthrylene	N	mg/kg	0.01	-	-	-	-	-	-	-	-
Dibenz[a,h]anthracene, 5,6-dihydro-	N	mg/kg		- 0.50	-	-	-	-	-	-	-
Dibenzo[a,e]cyclooctene Dibenzo[b,e]7,8-diazabicyclo[2.2.2]octa-2,5-diene	N N	mg/kg mg/kg		0.58	-	-	-	-	-	4.79	-
Dibenzofuran, 4-methyl-	N	mg/kg		0.35	0.28	-		-	-	4.79	-
Dibenzothiophene	N	mg/kg		0.85	-	-	-	-	4.71	0.63	-
Dibenzothiophene, 4-methyl-	N	mg/kg		1.06	-	-	-	-	-	-	-
Dichloroacetaldehyde	N	mg/kg		-	-	-	-	-	-	-	-
Diethyl 1-(8-azido-1-naphthyl)-1H-1,2,3-triazole-4,5-dicarboxylate Diethyl Phthalate	N N	mg/kg mg/kg		-	-	-	-	-	-	-	-
Ethane, 1,1,2,2-tetrachloro-	N	mg/kg		-	-	0.68	-	-	-	-	-
luoranthene, 2-methyl-	N	mg/kg	0.01	-	-	-	-	-	-	-	-
Heneicosane	N	mg/kg		-	-	-	5.25	-	-	-	-
Heptacosane, 1-chloro- Heptadecane, 2,6-dimethyl-	N N	mg/kg		-	-	-	-	-	-	-	-
Hexadecane	N	mg/kg mg/kg		-	0.58	-	-	-	-	-	-
ndene	N	mg/kg		-	-	-	-	-	-	-	-
ndeno[1,2,3-cd]fluoranthene	N	mg/kg	0.01	-	-	-	-	-	-	-	-
ndeno[1,2,3-cd]pyrene	N	mg/kg		-	5.91	-	-	-	-	-	-
ndeno[2,1-a]indene, 5,10-dihydro- I-(4-Methoxyphenyl)-2-hydroxyimino-acetamide	N N	mg/kg mg/kg		-	-	-	0.26	-	-	0.44	-
Varietioxyphenyr)-2-nydroxymmo-acetamide laphthalene, 1,2,3,4-tetrahydro-1,6-dimethyl-4-(1-methylethyl)-, (1S-cis)-	N	mg/kg		-	-	-	-	-	-	-	
laphthalene, 1,2-dihydro-1-phenyl-	N	mg/kg		2.47	-	-	-	-	-	-	-
laphthalene, 1,3-dimethyl-	N	mg/kg		-	-	-	-	-	2.4	-	-
laphthalene, 1,4-dimethyl-	N	mg/kg		-	-	-	-	0.62	-	0.82 0.55	-
laphthalene, 1,5-dimethyl- laphthalene, 1,6,7-trimethyl-	N N	mg/kg mg/kg		-	-	-	-	-	3.14	0.55	-
laphthalene, 1,6-dimethyl-	N	mg/kg		-	-	-	-	-	-	-	-
laphthalene, 1,7-dimethyl-	N	mg/kg	0.01	-	0.82	-	-	-	-	-	-
laphthalene, 1,8-dimethyl-	N	mg/kg		-	-	-	-	-	- 110		-
laphthalene, 1-methyl- laphthalene, 2,3,6-trimethyl-	N N	mg/kg		-	0.43	-	-	31.79	1.42	0.73	-
laphthalene, 2,3,6-trimetnyl- laphthalene, 2,6-dimethyl-	N	mg/kg		-	0.36	-	-	-	-		-
laphthalene, 2,7-dimethyl-	N	mg/kg		-	-	-	-	-	1.62	1.35	-
laphthalene, 2-ethenyl-	N	mg/kg	0.01	-	-	-	-	-	-	-	-
Japhthalene, 2-methyl-	N	mg/kg		- 24	-	-	-	-	-	-	-
laphthalene, 2-phenyl- laphtho[1,2-a]anthracene	N N	mg/kg mg/kg		2.1	-	-	-	-	-	-	-
laphtho[2,1-b]furan, 1,2-dimethyl-	N	mg/kg		-	-	-		-	-	-	-
lonadecane	N	mg/kg	0.01	-	0.07	-	-	-	-	-	-
lonane, 2,6-dimethyl-	N	mg/kg		-	-	-	-	-	1.41	-	-
Pentadecane Pentadecane, 2,6,10,14-tetramethyl-	N N	mg/kg mg/kg		-	0.69	-	-	0.5	-	-	-
Perinadecane, 2,6,10,14-tetrametryi-	N	mg/kg		-	- 0.69	-	-	-	-	1.04	-
Perylene	N	mg/kg	0.01	-	-	-	-	-	6.39	-	-
Phenanthrene, 1,7-dimethyl-	N	mg/kg	0.01	-	-	-	-	-	-	-	-
Phenanthrene, 1-methyl- Phenanthrene, 2-methyl-	N N	mg/kg		1.27	-	-	-	-	5.76	-	-
Phenanthrene, 2-methyl-	N	mg/kg mg/kg		1.27	-	-	-	-	-	-	-
Phenanthro[1,2-b]furan-10,11-dione, 6,7,8,9-tetrahydro-6-(hydroxymethyl)-1,6-dii		mg/kg		-	-	-	-	-	-	-	-
Pregnan-20-one, (5.alpha.)-	N	mg/kg	0.01	-	-	-	-	-	-	-	-
Pyrene 1.3 dimethyl	N	mg/kg		-	7.05	-	-	-	-	- 4.2	-
Pyrene, 1,3-dimethyl- Pyrene, 1-methyl-	N N	mg/kg mg/kg		5.55	-	2.71	1.68	-	3.67	4.2 2.46	2.95
Pyrene, 4-methyl-	N	mg/kg			-	-	-		-	-	2.95
Quinoxaline, 6-(3-nitrobenzylidenamino)-	N	mg/kg	0.01	2.18	-	-	3.18	-	-	2	-
Spiro[benzofuran-2(3H),2'-oxiran]-3-one, 6-methoxy-3'-phenyl-	N	mg/kg	0.01	-	-	-	-	-	-	-	-
Stigmasterol, 22,23-dihydro-	N	mg/kg		-	-	-	-	- 0.2	-	-	-
etradecane ricyclo[8.2.2.2(4,7)]hexadeca-2,4,6,8,10,12,13,15-octaene	N N	mg/kg mg/kg		-	-	-	0.56	0.2	-	-	-
ricyclo[8.2.2.2(4,7)]nexadeca-2,4,6,8,10,12,13,15-octaene Triphenylene	N	mg/kg		17.32	9.44	6.5	8	-	5.88	9.93	5.08
ungsten, pentacarbonyl(pyridazine-N1)-, (OC-6-22)-	N	mg/kg		-	-	-	-	-	-	3.62	-
1,1'-Biphenyl]-4-carboxaldehyde	N	mg/kg	0.01	-	-	-	-	-	-	-	-
14]Annulene, 1,6:8,13-bis(methano)-, syn	N	mg/kg mg/kg		-	-	0.87	-	-	-	-	-

Report No.: 18-18532

Determinand

Metals Arsenic Barium Beryllium Boron Cadmium Chromium Copper Lead Mercury Nickel Selenium Vanadium Zinc **Anions** Chloride Sulphate **Inorganics** Hexavalent chromium Elemental Sulphur

Sulphide Total Cyanide

Phenois
Total Phenois

рΗ

Miscellaneous
Dissolved organic carbon

Naphthalene Leachate GCMS
Acenaphthylene Leachate GCMS
Acenaphthene Leachate GCMS
Fluorene Leachate GCMS
Phenanthrene Leachate GCMS
Anthracene Leachate GCMS
Fluoranthene Leachate GCMS
Pyrene Leachate GCMS

Polyaromatic hydrocarbons

Benzo (a) anthracene Leachate GCMS

Benzo (b) fluoranthene Leachate GCMS
Benzo (k) fluoranthene Leachate GCMS
Benzo (a) pyrene Leachate GCMS
Indeno (1,2,3-cd) pyrene Leachate GCMS

Dibenzo(a,h)anthracene Leachate GCMS

Benzo(ghi)perylene Leachate GCMS

Total PAH(16) Leachate GCMS

Chrysene Leachate GCMS

	ELAB	Reference	142893	142896	142901	142907	142915
C	Customer	Reference					
	;	Sample ID					
		mple Type	SOIL	SOIL	SOIL	SOIL	SOIL
		e Location	WS02	WS03	WS04	WS05	WS06
		Depth (m)	3.70	0.50	1.50	2.50	4.70
		pling Date	10/07/2018	09/07/2018	09/07/2018	05/07/2018	10/07/2018
Codes	Units	LOD					
N	ug/l	5	< 5	6	16	< 5	< 5
N	ug/l	5	6	8	11	20	16
N N	ug/l ug/l	5 5	< 5 65	< 5 25	< 5 74	< 5 27	< 5 226
N	ug/l	1	< 1	< 1	< 1	< 1	< 1
N	ug/l	5	< 5	< 5	< 5	< 5	< 5
N	ug/l	5	10	6	9	< 5	6
N	ug/l	5	< 5	< 5	< 5	< 5	< 5
N	ug/l	0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1
N	ug/l	5	< 5	< 5	< 5	< 5	< 5
N	ug/l	5	< 5	< 5	< 5	< 5	< 5
N N	ug/l ug/l	5 5	< 5 18	18 10	21 20	< 5 5	< 5 8
IN	ug/i	3	10	10	20	5	0
l N		4	0	0	44	4	
N N	mg/l mg/l	1	3	10	11 13	10	2 20
IN	ilig/i	'	3	10	13	10	20
l N	n 1	400	400	400	400	400	400
N N	ug/l	100 0.1	< 100 < 0.1				
N	mg/l mg/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1
N	ug/l	5	< 5	< 5	< 5	< 5	< 5
N	mg/l	1.5	13.4	7.8	16.1	7.4	12.3
N	pH units	0.1	7.6	7.6	7.8	7.7	7.7
N	ug/l	6	< 6	< 6	< 6	< 6	< 6
	1.9.	-					
N	ug/l	0.01	0.12	0.11	0.14	0.16	0.13
N	ug/l	0.01	< 0.01	0.06	0.02	0.02	0.02
N	ug/l	0.01	0.01	0.03	0.03	0.03	0.03
N	ug/l	0.01	0.01	0.02	0.01	0.02	0.01
N	ug/l	0.01	0.04	0.11	0.03	0.04	0.03
N	ug/l	0.01	0.01	0.10	0.04	0.02	0.02
N	ug/l	0.01	0.02	0.37	0.03	0.04	0.02
N N	ug/l ug/l	0.01 0.01	0.01 < 0.01	0.33 0.17	0.02	0.03	0.01
N	ug/l	0.01	< 0.01	0.17	0.03	0.02	0.01
N	ug/l	0.01	0.01	0.21	0.03	0.02	< 0.01
N	ug/l	0.01	< 0.01	0.24	0.04	0.02	< 0.01
N	ug/l	0.01	< 0.01	0.26	0.02	0.01	< 0.01
N	ug/l	0.01	< 0.01	0.15	0.02	0.02	< 0.01
l NI	/	0.04	. 0.01	0.05	0.04	. 0.04	. 0 04

0.01

0.01

0.01

< 0.01

0.02

0.31

0.05

0.23

2.68

0.01

0.03

0.54

< 0.01

0.02

0.50

< 0.01

0.01

0.34

N

Ν

Ν

ug/l

ug/l

ug/l

Ν

Ν

Ν

ug/l

ug/l

ug/l

5

5

5

< 5.0

< 5.0

< 5.0

Results Summary

Report No.: 18-18532

Determinand

Ethylbenzene

TPH CWG

>C5-C6 Aliphatic in Leachate

>C6-C8 Aliphatic in Leachate

>C8-C10 Aliphatic Leachate

>C10-C12 Aliphatic Leachate

>C12-C16 Aliphatic Leachate

>C16-C21 Aliphatic Leachate

>C21-C35 Aliphatic Leachate

>C35-C40 Aliphatic Leachate

>C5-C7 Aromatic in Leachate

>C7-C8 Aromatic in Leachate

>C8-C10 Aromatic Leachate

>C10-C12 Aromatic Leachate

>C12-C16 Aromatic Leachate

>C16-C21 Aromatic Leachate

>C21-C35 Aromatic Leachate

>C35-C40 Aromatic Leachate

Total (>C5-C40) Aromatic Leachate

Total (>C5-C40) Ali/Aro Leachate

Total (>C5-C40) Aliphatic Leachate

BTEX Benzene

Toluene

Xylenes

142893 **ELAB Reference** 142896 142901 142907 142915 Customer Reference Sample ID Sample Type SOIL SOIL SOIL SOIL SOIL WS02 WS03 WS06 Sample Location WS04 WS05 Sample Depth (m) 3.70 0.50 1.50 2.50 4.70 Sampling Date 10/07/2018 09/07/2018 09/07/2018 05/07/2018 10/07/2018 Codes Units LOD Ν ug/l < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 Ν 1 < 1.00 < 1.00 < 1.00 ug/l < 1.00 N < 1.00 < 1.00 < 1.00 < 1.00 ug/l 1 Ν ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.0 < 1.0 N < 1.0 < 1.0 < 1.0 ug/l 1 Ν 1 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ug/l Ν 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l N 5 < 5.0 < 5.0 < 5.0 < 5.0 ug/l < 5.0 5 Ν ug/l < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 N 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l Ν ug/l 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 N 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l N 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l N ug/l 1 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 N < 1.0 < 1.0 1 < 1.0 < 1.0 < 1.0 ug/l Ν 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l Ν 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l Ν 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l Ν 5 ug/l < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 Ν 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

Total PAH(16) Leachate GCMS

Results Sulfilliary									
Report No.: 18-18532						1			
		ELAB	Reference	142928	142939	142952	142999	143006	143016
	C	Customer	Reference						
		:	Sample ID						
			mple Type		SOIL	SOIL	SOIL	SOIL	SOIL
			e Location		WS12	TP05	TP27	TP31	TP35
		Sample	Depth (m)	2.50	1.70	0.90	2.00	0.50	1.30
		Sam	pling Date	05/07/2018	10/07/2018	06/07/2018	09/07/2018	05/07/2018	11/07/20
Determinand	Codes	Units	LOD						
Metals									
Arsenic	N	ug/l	5	5	< 5	< 5	< 5	< 5	6
Barium	N	ug/l	5	18	11	5	23	8	18
Beryllium	N	ug/l	5	< 5	< 5	< 5	< 5	< 5	< 5
Boron	N	ug/l	5	74	40	14	59	8	119
Cadmium	N	ug/l	1	< 1	< 1	< 1	< 1	< 1	< 1
Chromium	N	ug/l	5	< 5	< 5	< 5	< 5	< 5	< 5
Copper	N	ug/l	5	5	7	< 5	< 5	< 5	9
Lead	N	ug/l	5	< 5	< 5	< 5	< 5	< 5	< 5
Mercury	N	ug/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	N	ug/l	5	< 5	< 5	< 5	< 5	< 5	< 5
Selenium	N	ug/l	5	< 5	< 5	< 5	< 5	< 5	< 5
Vanadium	N	ug/l	5	5	8	< 5	< 5	< 5	< 5
Zinc	N	ug/l	5	9	8	6	< 5	16	15
Anions									
Chloride	N	mg/l	1	1	2	< 1	4	2	2
Sulphate	N	mg/l	1	11	6	4	15	5	16
Inorganics									
Hexavalent chromium	N	ug/l	100	< 100	< 100	< 100	< 100	< 100	< 100
Elemental Sulphur	N	mg/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sulphide	N	mg/l	0.1	0.1	0.1	0.2	0.1	0.2	0.1
Total Cyanide	N	ug/l	5	< 5	< 5	< 5	< 5	< 5	< 5
Miscellaneous									
Dissolved organic carbon	N	mg/l	1.5	7.5	11.7	2.5	8.6	4.6	14.0
pH	N	pH units	0.1	7.9	7.7	6.2	7.9	7.6	7.9
Phenols		p ato	0	1.0		0.2		1.0	
Total Phenols	N	ug/l	6	< 6	< 6	< 6	< 6	< 6	< 6
Polyaromatic hydrocarbons	11	ug/i	0	10		_ \	1		10
Naphthalene Leachate GCMS	N	ug/l	0.01	0.12	1.12	0.13	0.12	0.13	0.12
Acenaphthylene Leachate GCMS	N	ug/l	0.01	< 0.01	0.05	< 0.01	0.01	0.01	0.02
Acenaphthene Leachate GCMS	N	ug/l	0.01	0.02	0.36	0.01	0.03	0.01	0.02
Fluorene Leachate GCMS	N	ug/l	0.01	0.01	0.14	< 0.01	< 0.01	< 0.01	< 0.0
Phenanthrene Leachate GCMS	N	ug/l	0.01	0.05	0.14	0.03	0.03	0.03	0.04
Anthracene Leachate GCMS	N	ug/l	0.01	0.02	0.14	< 0.01	0.02	0.02	0.02
Fluoranthene Leachate GCMS	N	ug/l	0.01	0.02	0.02	0.03	0.02	0.02	0.02
Pyrene Leachate GCMS	N	ug/l	0.01	0.02	0.02	0.02	0.02	0.02	0.08
Benzo (a) anthracene Leachate GCMS	N	ug/l	0.01	0.02	0.02	< 0.01	0.01	0.02	0.05
Chrysene Leachate GCMS	N	ug/l	0.01	0.01	0.07	< 0.01	< 0.01	0.02	0.08
Benzo (b) fluoranthene Leachate GCMS	N	ug/l	0.01	0.01	0.04	0.01	< 0.01	0.03	0.05
Benzo (k) fluoranthene Leachate GCMS	N	ug/l	0.01	0.01	0.03	0.01	< 0.01	0.02	0.05
Benzo (a) pyrene Leachate GCMS	N	ug/l	0.01	< 0.01	0.02	< 0.01	< 0.01	0.02	0.03
Indeno (1,2,3-cd) pyrene Leachate GCMS	N	ug/l	0.01	0.01	0.02	< 0.01	< 0.01	0.01	0.03
Dibenzo(a,h)anthracene Leachate GCMS	N	ug/l	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	0.03
Benzo(ghi)perylene Leachate GCMS	N	ug/l	0.01	0.01	0.01	0.01	0.01	0.03	0.05
Total DAH(16) Leachate GCMS	NI NI	ug/l	0.01	0.36	2.21	0.01	0.33	0.00	0.00

0.01

Ν

ug/l

0.36

2.21

0.31

0.33

0.41

0.77

Repo

Report No.: 18-18532									
		ELAB	Reference	142928	142939	142952	142999	143006	143016
	C	ustomer	Reference						
			Sample ID						
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location		WS12	TP05	TP27	TP31	TP35
		-	Depth (m)		1.70	0.90	2.00	0.50	1.30
		Sam	pling Date	05/07/2018	10/07/2018	06/07/2018	09/07/2018	05/07/2018	11/07/2018
Determinand	Codes	Units	LOD						
BTEX									
Benzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Toluene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Ethylbenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Xylenes	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
TPH CWG									
>C5-C6 Aliphatic in Leachate	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C6-C8 Aliphatic in Leachate	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C8-C10 Aliphatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C10-C12 Aliphatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C12-C16 Aliphatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C16-C21 Aliphatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C21-C35 Aliphatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C35-C40 Aliphatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5-C40) Aliphatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C5-C7 Aromatic in Leachate	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C7-C8 Aromatic in Leachate	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C8-C10 Aromatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C10-C12 Aromatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C12-C16 Aromatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C16-C21 Aromatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C21-C35 Aromatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C35-C40 Aromatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5-C40) Aromatic Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5-C40) Ali/Aro Leachate	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Dibenzo(a,h)anthracene Leachate GCMS

Benzo(ghi)perylene Leachate GCMS

Total PAH(16) Leachate GCMS

Results Summary								
Report No.: 18-18532								
•		ELAB	Reference	143024	143039	143047	143051	143059
	C		Reference					
							-	
			Sample ID					
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	le Location	TP37	TP43	TP46	TP47	TP49
		Sample	Depth (m)	3.00	1.20	0.90	0.50	1.50
		Sam	pling Date	09/07/2018	11/07/2018	09/07/2018	10/07/2018	10/07/2018
Determinand	Codes	Units	LOD					
Metals								
Arsenic	N	ua/l		18	< 5	< 5		< 5
Barium	N	ug/l ug/l	5 5	22	16	9	< 5 9	75
Beryllium	N	ug/l	5	< 5	< 5	< 5	< 5	< 5
Boron	N	ug/l	5	80	54	31	24	67
Cadmium	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Chromium	N	ug/l	5	< 5	< 5	< 5	< 5	< 5
Copper	N	ug/l	5	11	6	< 5	< 5	6
Lead	N	ug/l	5	< 5	< 5	< 5	< 5	< 5
Mercury	N	ug/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	N	ug/l	5	< 5	< 5	< 5	< 5	< 5
Selenium	N	ug/l	5	< 5	< 5	< 5	< 5	< 5
Vanadium	N	ug/l	5	87	< 5	< 5	< 5	< 5
Zinc	N	ug/l	5	< 5	8	12	24	9
Anions								
Chloride	N	mg/l	1	2	1	1	1	< 1
Sulphate	N	mg/l	1	34	4	5	5	27
Inorganics		<u> </u>		<u> </u>				
Hexavalent chromium	N	ug/l	100	< 100	< 100	< 100	< 100	< 100
Elemental Sulphur	N	mg/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sulphide	N	mg/l	0.1	< 0.1	0.1	0.1	0.1	0.1
Total Cyanide	N	ug/l	5	9	< 5	< 5	< 5	< 5
Miscellaneous		_ ug/i		Ů	10	10	- 10	10
			4.5	44.4	5.0	7.0	0.7	7.0
Dissolved organic carbon	N N	mg/l	1.5	11.1	5.6	7.8	6.7	7.6
pH Disassels	IN	pH units	0.1	9.1	7.8	7.8	7.6	7.8
Phenois								
Total Phenols	N	ug/l	6	< 6	< 6	< 6	< 6	< 6
Polyaromatic hydrocarbons								
Naphthalene Leachate GCMS	N	ug/l	0.01	3.97	0.12	0.12	0.11	0.13
Acenaphthylene Leachate GCMS	N	ug/l	0.01	0.26	0.02	0.01	< 0.01	< 0.01
Acenaphthene Leachate GCMS	N	ug/l	0.01	0.51	0.01	< 0.01	< 0.01	0.01
Fluorene Leachate GCMS	N	ug/l	0.01	0.26	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene Leachate GCMS	N	ug/l	0.01	0.37	0.06	0.03	0.03	0.02
Anthracene Leachate GCMS	N	ug/l	0.01	0.61	0.03	0.02	0.01	0.02
Fluoranthene Leachate GCMS	N	ug/l	0.01	0.17	0.10	0.02	0.02	0.01
Pyrene Leachate GCMS	N	ug/l	0.01	0.16	0.08	0.02	0.01	< 0.01
Benzo (a) anthracene Leachate GCMS	N	ug/l	0.01	0.15	0.04	0.02	0.01	< 0.01
Chrysene Leachate GCMS	N	ug/l	0.01	0.12	0.06	0.02	0.01	< 0.01
Benzo (b) fluoranthene Leachate GCMS	N	ug/l	0.01	0.18	0.05	0.03	0.01	< 0.01
Benzo (k) fluoranthene Leachate GCMS	N	ug/l	0.01	0.19	0.04	0.02	< 0.01	< 0.01
Benzo (a) pyrene Leachate GCMS	N	ug/l	0.01	0.23	0.03	0.02	< 0.01	< 0.01
Indeno (1,2,3-cd) pyrene Leachate GCMS	N N	ug/l	0.01	0.15	0.03	0.02	< 0.01	< 0.01
LIDED ZOTA DIADIDIACEDE I EACDATE GUMS	ı Nı	I LICI/I	. 0.01	1 0.06	() ()7	() () 7	0 07	() ()1

0.01

0.01

0.01

N

Ν

N

ug/l

ug/l

ug/l

0.06

0.19

7.59

< 0.01

0.04

0.74

< 0.01

0.03

0.41

< 0.01

0.02

0.28

< 0.01

< 0.01

0.23

Ν

Ν

Ν

Ν

Ν

Ν

Ν

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

5

5

5

5

5

5

5

< 5.0

< 5.0

18.7

< 5.0

< 5.0

18.7

18.7

Results Summary

Report No.: 18-18532

Determinand

Ethylbenzene

TPH CWG

>C5-C6 Aliphatic in Leachate

>C6-C8 Aliphatic in Leachate

>C8-C10 Aliphatic Leachate

>C10-C12 Aliphatic Leachate

>C12-C16 Aliphatic Leachate

>C16-C21 Aliphatic Leachate

>C21-C35 Aliphatic Leachate

>C35-C40 Aliphatic Leachate

>C5-C7 Aromatic in Leachate

>C7-C8 Aromatic in Leachate

>C8-C10 Aromatic Leachate

>C10-C12 Aromatic Leachate

>C12-C16 Aromatic Leachate

>C16-C21 Aromatic Leachate

>C21-C35 Aromatic Leachate

>C35-C40 Aromatic Leachate

Total (>C5-C40) Aromatic Leachate

Total (>C5-C40) Ali/Aro Leachate

Total (>C5-C40) Aliphatic Leachate

BTEX Benzene

Toluene

Xylenes

143024 **ELAB Reference** 143039 143047 143051 143059 Customer Reference Sample ID Sample Type SOIL SOIL SOIL SOIL SOIL TP37 TP43 TP47 TP49 Sample Location TP46 Sample Depth (m) 3.00 1.20 0.90 0.50 1.50 Sampling Date 09/07/2018 11/07/2018 09/07/2018 10/07/2018 10/07/2018 Codes Units LOD Ν ug/l < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 Ν 1 < 1.00 < 1.00 < 1.00 ug/l < 1.00 < 1.00 N < 1.00 < 1.00 < 1.00 ug/l 1 Ν ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.0 < 1.0 N < 1.0 < 1.0 < 1.0 ug/l 1 Ν 1 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ug/l Ν 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l N ug/l 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 5 Ν ug/l < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 N 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l Ν ug/l 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 N 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l N 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l N ug/l 1 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 N < 1.0 1 < 1.0 < 1.0 < 1.0 < 1.0 ug/l Ν 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

Unit A2, Windmill Road, Ponswood Industrial Estate, St Leonards on Sea, East Sussex, TN38 9BY Tel: +44 (0)1424 718618, Email: info@elab-uk.co.uk, Web: www.elab-uk.co.uk

Results Summary Report No.: 18-18532

Asbestos Results

Analytical result only applies to the sample as submitted by the client. Any comments, opinions or interpretations (marked #) in this report are outside UKAS accreditation (Accreditation No2683). They are subjective comments only which must be verified by the client.

Elab No	Depth (m)	Clients Reference	Description of Sample Matrix #	Asbestos Identification	Gravimetric Analysis Total	Gravimetric Analysis by ACM	Free Fibre Analysis	Total Asbestos
					(%)	Type (%)	(%)	(%)
142883		WS01	Brown sandy soil, stones, organics	No asbestos detected	n/t	n/t	n/t	n/t
142885		WS01	Brown sand, stones	No asbestos detected	n/t	n/t	n/t	n/t
142888		WS01	Brown sand, stones, organics	No asbestos detected	n/t	n/t	n/t	n/t
142892		WS02	Brown sandy soil, stones, concrete, brick, clinker, chalk,	No asbestos detected	n/t	n/t	n/t	n/t
142895		WS03	Brown sandy soil, stones, concrete, brick, clinker,	No asbestos detected	n/t	n/t	n/t	n/t
142898		WS03	Brown sandy soil, stones, clinker	No asbestos detected	n/t	n/t	n/t	n/t
142900		WS04	Chalk, stones, tar	No asbestos detected	n/t	n/t	n/t	n/t
142902		WS04	Brown sandy soil, stones, concrete, clinker, glass	No asbestos detected	n/t	n/t	n/t	n/t
142904		WS04	Brown sandy soil, stones, concrete, brick, clinker, glass	No asbestos detected	n/t	n/t	n/t	n/t
142906		WS05	Brown sandy soil, stones, brick, clinker, glass	No asbestos detected	n/t	n/t	n/t	n/t
142909		WS05	Brown sandy soil, stones, concrete, brick, clinker, glass	No asbestos detected	n/t	n/t	n/t	n/t
142910		WS06	Brown sandy soil, stones, clinker, organics	No asbestos detected	n/t	n/t	n/t	n/t
142913		WS06	Brown sandy soil, stones, concrete, clinker	No asbestos detected	n/t	n/t	n/t	n/t
142917		WS07	Brown sand, stones	No asbestos detected	n/t	n/t	n/t	n/t
142920		WS08	Brown sandy soil, stones, concrete, brick, clinker, chalk	No asbestos detected	n/t	n/t	n/t	n/t
142922		WS08	Brown sandy soil, stones, concrete, brick, clinker	No asbestos detected	n/t	n/t	n/t	n/t
142924		WS08	Brown soil, stones, organics	No asbestos detected	n/t	n/t	n/t	n/t
142927		WS09	Brown sandy soil, stones, concrete, brick, clinker	No asbestos detected	n/t	n/t	n/t	n/t
142929		WS09	Brown sandy soil, stones, concrete, brick, clinker	No asbestos detected	n/t	n/t	n/t	n/t
142932		WS11	Brown sandy soil, stones, concrete, clinker, tar, wood,	No asbestos detected	n/t	n/t	n/t	n/t
142934		WS11	Brown soil, stones	No asbestos detected	n/t	n/t	n/t	n/t
142936	4.60	WS11	Brown soil, stones, plant-material	No asbestos detected	n/t	n/t	n/t	n/t
142937	0.20	WS12	Brown soil, stones, chalk	No asbestos detected	n/t	n/t	n/t	n/t
142941	3.80	WS12	Brown soil, stones, clinker	No asbestos detected	n/t	n/t	n/t	n/t
142947	0.10	TP03	Brown soil, stones, plant-material	No asbestos detected	n/t	n/t	n/t	n/t
142951	0.50	TP05	brown sandy soil with stones, brick and clinker	No asbestos detected	n/t	n/t	n/t	n/t
142967	0.80	TP12	brown sandy soil with stones	No asbestos detected	n/t	n/t	n/t	n/t
142971		TP14	brown sandy soil with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
142980	2.00	TP18	brown soil (clay) with stones, clinker and silver paper	No asbestos detected	n/t	n/t	n/t	n/t
142987	0.30	TP24	brown soil (clay) with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
142989	1.50	TP24	brown soil (clay) with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
142991	2.00	TP25	brown soil (clay) with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
142994	0.50	TP26	brown soil (clay) with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
142998	1.00	TP27	brown soil (clay) with stones, clinker and wood	No asbestos detected	n/t	n/t	n/t	n/t
143001	1.50	TP29	brown sandy soil with stones, clinker and twigs	No asbestos detected	n/t	n/t	n/t	n/t
143004	2.50	TP30	brown sandy soil with stones, clinker and grey slate	No asbestos detected	n/t	n/t	n/t	n/t
143008	2.50	TP31	brown soil (clay) with stones	No asbestos detected	n/t	n/t	n/t	n/t
143015	0.40	TP35	brown sandy soil with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
143021		TP37	brown sandy soil with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
143023		TP37	brown sandy soil with stones, clinker, chalk and twigs	No asbestos detected	n/t	n/t	n/t	n/t
143030	1.70	TP39	brown sandy soil with stones, clinker and clear glass	No asbestos detected	n/t	n/t	n/t	n/t
143032	1.00	TP40	brown sandy soil with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
143038	0.50	TP43	brown sandy soil with stones, clinker, brick and chalk	No asbestos detected	n/t	n/t	n/t	n/t
143040	1.90	TP43	brown sandy soil with stones, clinker and grey slate	No asbestos detected	n/t	n/t	n/t	n/t
143046	0.30	TP46	brown sandy soil with stones, clinker, twigs and chalk	No asbestos detected	n/t	n/t	n/t	n/t
143049	3.00	TP46	brown soil (clay) with stones, clinker and brick	No asbestos detected	n/t	n/t	n/t	n/t
143053	2.70	TP47	brown soil (clay) with stones	No asbestos detected	n/t	n/t	n/t	n/t
143058		TP49	brown soil (clay) with stones, clinker, twigs and clear	No asbestos detected	n/t	n/t	n/t	n/t
143060		TP49	brown sandy soil with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
143063		TP50	brown soil (clay) with stones and clinker	No asbestos detected	n/t	n/t	n/t	n/t
143102		HP07A	brown sandy soil with stones and twigs	No asbestos detected	n/t	n/t	n/t	n/t
143103		HP07B	brown sandy soil with stones twigs and leaves	No asbestos detected	n/t	n/t	n/t	n/t

Method Summary Report No.: 18-18532

Parameter	Codes	Analysis Undertaken	Date	Method	Technique
Soil		On	Tested	Number	1
					la a sus
Aliphatic hydrocarbons in leachate	N		18/07/2018		GC-FID
Aliphatic/Aromatic hydrocarbons in leach	N		23/07/2018		GC-FID
Ammonia in soil	N	As submitted sample	19/07/2018		
Aromatic hydrocarbons in leachate	N		18/07/2018		GC-FID
Carbon in leachates	N		18/07/2018		IR
Cyanide (L) in solids in leachates	N		17/07/2018		Colorimetry
Elemental Sulphur by HPLC in leachates	N	On prepared leachate	18/07/2018		HPLC
Free cyanide	N	As submitted sample	17/07/2018		Colorimetry
Phenols in leachates	N		17/07/2018		HPLC
Sulphide in solids in leachates	N		17/07/2018		Colorimetry
VOC in solids	M	As submitted sample	17/07/2018		GC-MS
pH of leachates	N		19/07/2018		Electromeric
Metals by ICP in leachates	N		17/07/2018	101	ICPMS
Free cyanide	N	As submitted sample	17/07/2018	107	Colorimetry
Sulphide	N	As submitted sample	16/07/2018	109	Colorimetry
Hexavalent chromium	N	As submitted sample	16/07/2018	110	Colorimetry
рН	М	Air dried sample	16/07/2018	113	Electromeric
Acid Soluble Sulphate	U	Air dried sample	18/07/2018	115	Ion Chromatography
Aqua regia extractable metals	M	Air dried sample	16/07/2018	118	ICPMS
W. Sol Metals	N	Air dried sample	17/07/2018	118	ICPMS
Phenols in solids	N	As submitted sample	16/07/2018	121	HPLC
Elemental Sulphur	М	Air dried sample	16/07/2018	122	HPLC
PAH (GC-FID)	М	As submitted sample	16/07/2018	133	GC-FID
PAHs and/or PCBs in leachates	N		19/07/2018	135	GC-MS
SVOC in solids	N	As submitted sample	16/07/2018	167	GC-MS
Water soluble anions	М	Air dried sample	16/07/2018	172	Ion Chromatography
Organochlorine Pesticides in solids	М	As submitted sample	16/07/2018	173	GC-MS
Low range Aliphatic hydrocarbons soil	N	As submitted sample	17/07/2018	181	GC-MS
Low range Aromatic hydrocarbons soil	N	As submitted sample	17/07/2018	181	GC-MS
VOC in solids	М	As submitted sample	17/07/2018	181	GC-MS
BTEX in solids	М	As submitted sample	17/07/2018	181A	GC-MS
Low range Aliphatic hydrocarbons leachat	N		19/07/2018	200	GC-MS
Low range Aromatic hydrocarbons leachate	N		19/07/2018	200	GC-MS
BTEX in leachates	N		19/07/2018	200A	GC-MS
Water soluble boron	N	Air dried sample	16/07/2018	202	Colorimetry
Total cyanide	М	As submitted sample	16/07/2018	204	Colorimetry
Total organic carbon/Total sulphur	N	Air dried sample	16/07/2018	210	IR
Aliphatic hydrocarbons in soil	N	As submitted sample	16/07/2018	214	GC-FID
Aliphatic/Aromatic hydrocarbons in soil	N	As submitted sample	17/07/2018	214	GC-FID
Aromatic hydrocarbons in soil	N	As submitted sample	16/07/2018	214	GC-FID
Total organic carbon/Total sulphur	N	Air dried sample	16/07/2018	216	IR
Anions in leachates	N	·	17/07/2018	270	Ion Chromatography
Asbestos identification	U	Air dried sample	16/07/2018	PMAN	Microscopy

Tests marked N are not UKAS accredited

Report Information

Report No.: 18-18532

Key

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

Soil sample results are expressed on an air dried basis (dried at < 30°C)

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request

Deviation Codes

- a No date of sampling supplied
 b No time of sampling supplied (Waters Only)
 c Sample not received in appropriate containers
 d Sample not received in cooled condition
 e The container has been incorrectly filled
 f Sample age exceeds stability time (sampling to receipt)
 g Sample age exceeds stability time (sampling to analysis)
- Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month
All water samples will be retained for 7 days following the date of the test report
Charges may apply to extended sample storage

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618 Facsimile: (01424) 729911 info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 18-18829

Issue: 1

Date of Issue: 08/08/2018

Contact: Jason Kanellis

Customer Details: GESL

Unit 7

Danworth Farm Hurstpierpoint West Sussex BN6 9GL

Quotation No: Q14-00021

Order No: 602

Customer Reference: GE17326

Date Received: 31/07/2018

Date Approved: 08/08/2018

Details: Evergreen Farm, East Grinstead

Approved by:

John Wilson, Operations Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683)

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
145076	WS02 2.33	30/07/2018	31/07/2018		
145077	WS08 4.05	30/07/2018	31/07/2018		
145078	WS11 2.26	30/07/2018	31/07/2018		
145079	WS12 0.88	30/07/2018	31/07/2018		
145080	Stream 0.88	30/07/2018	31/07/2018		

Results Sullillary 268	3							
Report No.: 18-18829								
		ELAB	Reference	145076	145077	145078	145079	145080
	(Customer	Reference					
		;	Sample ID					
		Sai	mple Type	WATER	WATER	WATER	WATER	WATER
			e Location		WS08	WS11	WS12	Stream
			Depth (m)		4.05	2.26	0.88	0.88
				30/07/2018	30/07/2018	30/07/2018	30/07/2018	30/07/20
Determinand	Codes	Units	LOD					
Dissolved Metals								
Arsenic	U	ug/l	5	18	11	6	13	< 5
Boron	N	ug/l	5	263	149	257	954	175
Barium	U	ug/l	5	183	148	121	273	45
Beryllium	U	ug/l	5	< 5	< 5	< 5	< 5	< 5
Cadmium	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Chromium	U	ug/l	5	< 5	< 5	< 5	< 5	< 5
Copper	U	ug/l	5	< 5	< 5	< 5	< 5	< 5
Mercury	U	ug/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	U	ug/l	5 1	< 5	17	10 < 1	< 5	< 5
Lead Selenium	U	ug/l ug/l	5	< 1 < 5	< 1 5	8	< 1 6	< 1 < 5
Vanadium	N N	ug/l	5	< 5	< 5	< 5	< 5	< 5
Zinc	U	ug/l	5	< 5	< 5	< 5	< 5	< 5
Anions		ug/i						
Chloride	U	ma/l	0.5	56.3	135	204	201	49.3
Nitrite	U	mg/l mg/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Nitrate	U	mg/l	0.5	< 0.5	1.0	< 0.5	< 0.5	4.8
Sulphate	U	mg/l	0.5	6.0	42.8	18.2	38.8	97.8
Inorganics		9,.	0.0	0.0			55.5	0110
Elemental Sulphur	l N	mg/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ammoniacal Nitrogen as N	N	mg/l	0.1	8.2	8.2	33	41	< 0.1
Hexavalent Chromium	U	ug/l	100	< 100	< 100	< 100	< 100	< 100
Ammonia as NH4	N	mg/l	0.1	13	13	51	64	0.1
Sulphide	N	mg/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Miscellaneous								
Biochemical Oxygen Demand (5 day)	N	mg/l	2	> 400	19	13	12	9
Chemical Oxygen Demand	N	mg/l	2	9400	240	110	100	36
Electrical Conductivity	U	uS/cm	1	1120	1370	1300	2040	734
Dissolved organic carbon	U	mg/l	1.5	30	82	51	54	16
Dissolved Oxygen	U	mg/l	0.1	< 0.1	3.4	6.8	7.1	8.9
рН	U	pH units	0.1	7.4	6.9	7.2	7.7	7.6
Phenois								
Phenol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
M,P-Cresol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
O-Cresol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
3,4-Dimethylphenol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
2,3-Dimethylphenol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
2,3,5-trimethylphenol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Total Monohydric Phenols	N	ug/l	1	< 1	< 1	< 1	< 1	< 1

		ELAB	Reference	145076	145077	145078	145079	14508
	(Reference				2	
			Sample ID					
		Sa	mple Type	WATER	WATER	WATER	WATER	WATE
		Samp	le Location	WS02	WS08	WS11	WS12	Strear
		Sample	Depth (m)	2.33	4.05	2.26	0.88	0.88
		Sam	npling Date	30/07/2018	30/07/2018	30/07/2018	30/07/2018	30/07/2
Determinand	Codes	Units	LOD					
Polyaromatic hydrocarbons								
Naphthalene GCMS	N	ug/l	0.01	15.9	0.17	0.35	0.76	0.10
Acenaphthylene GCMS	N	ug/l	0.01	60.9	0.17	0.26	0.70	0.14
Acenaphthene GCMS	N	ug/l	0.01	144	0.33	0.28	0.31	0.12
Fluorene GCMS	N	ug/l	0.01	158	0.07	0.08	0.22	0.02
Phenanthrene GCMS	N	ug/l	0.01	687	0.05	0.10	0.13	0.0
Anthracene GCMS	N	ug/l	0.01	171	0.14	0.47	0.30	0.0
Fluoranthene GCMS	N	ug/l	0.01	1200	0.12	0.32	0.24	0.0
Pyrene GCMS	N	ug/l	0.01	964	0.26	0.80	0.59	0.1
Benzo (a) anthracene GCMS	N	ug/l	0.01	591	0.24	0.72	0.32	0.0
Chrysene GCMS	N	ug/l	0.01	452	0.17	0.40	0.33	0.0
Benzo (b) fluoranthene GCMS	N	ug/l	0.01	547	0.14	0.40	0.50	0.0
Benzo (k) fluoranthene GCMS	N	ug/l	0.01	431	0.22	0.40	0.39	0.0
Benzo (a) pyrene GCMS	N	ug/l	0.01	779	0.10	0.40	0.59	0.0
Indeno (1,2,3-cd) pyrene GCMS	N	ug/l	0.01	316	0.24	0.30	0.36	0.0
Dibenzo(a,h)anthracene GCMS	N	ug/l	0.01	123	0.13	0.30	0.36	0.0
Benzo(ghi)perylene GCMS	N	ug/l	0.01	369	0.07	0.12	0.16	0.0
Total PAH(16) GCMS	N	ug/l	0.01	7010	2.75	6.35	6.25	1.0
TPH CWG	IN	ug/i	0.01	7010	2.73	0.55	0.23	1.0
	NI NI	/	1	.10	.10	.10	.10	. 1
>C5-C6 Aliphatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1. < 1.
>C6-C8 Aliphatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	
>C8-C10 Aliphatic	N N	ug/l	5 5	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5. < 5.
>C10-C12 Aliphatic >C12-C16 Aliphatic	N	ug/l ug/l	5	10.5	< 5.0	< 5.0 < 5.0	< 5.0	< 5.
>C12-C16 Aliphatic >C16-C21 Aliphatic	N	ug/l	5	15.4	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0	< 5.
>C10-C21 Aliphatic >C21-C35 Aliphatic	N	ug/l	5	173	5.5	< 5.0	< 5.0	< 5.
>C35-C40 Aliphatic	N	ug/l	5	13.8	< 5.0	< 5.0	< 5.0	< 5.
Total (>C5-C40) Aliphatic	N	ug/l	5	212	5.5	< 5.0	< 5.0	< 5.
>C5-C7 Aromatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.
>C7-C8 Aromatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	1.9	< 1.
>C8-C10 Aromatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.
>C10-C12 Aromatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.
>C12-C16 Aromatic	N	ug/l	5	11.4	< 5.0	< 5.0	< 5.0	< 5.
>C16-C21 Aromatic	N	ug/l	5	38.6	< 5.0	< 5.0	< 5.0	< 5.
>C10-C21 Aromatic >C21-C35 Aromatic	N	ug/l	5	231	8.5	< 5.0	< 5.0	< 5.
>C35-C40 Aromatic	N	ug/l	5	8.1	< 5.0	< 5.0	< 5.0	< 5.
Total (>C5-C40) Aromatic	N	ug/l	5	289	8.5	< 5.0	< 5.0	< 5.
Total (>C5-C40) Ali/Aro	N	ug/l	5	501	14.0	< 5.0	< 5.0	< 5.

		ELAB	Reference	145076	145077	145078	145079	145080
	Cu	stomer	Reference					
			Sample ID					
		Sa	mple Type	WATER	WATER	WATER	WATER	WATER
	Sample Location					WS11	WS12	Stream
	Sample Depth (m)			2.33	4.05	2.26	0.88	0.88
		Sam	nling Date	30/07/2018	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Dataind	0			00/01/2010	00/01/2010	00/01/2010	00/01/2010	00/01/2010
Determinand	Codes	Units	LOD					
VOC								
MTBE	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Heptane	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Octane	N	ug/l	11	< 1	< 1	< 1	< 1	< 1
Nonane	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Benzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Toluene	U	ug/l	1	< 1	< 1	< 1	2	< 1
Ethylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
m+p-xylene o-xylene	U	ug/l ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
cis-1,2-dichloroethene	U	ug/l	1	< 1	<1	< 1	< 1	< 1
1,1-Dichloroethane	U	ug/l	1	< 1	<1	<1	<1	< 1
Chloroform	U	ug/l	1	< 1	<1	<1	<1	< 1
Tetrachloromethane	U	ug/l	1	< 1	<1	< 1	< 1	< 1
1,1,1-Trichloroethane	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	Ü	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1,1,2-Tetrachloroethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroetha	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Bromobenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Bromodichloromethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Methylethylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1-Dichloro-1-propene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Trans - 1-2 -dichloroethylene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
2,2-Dichloropropane	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Bromochloromethane	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2-Dichloroethane	U	ug/l	11	< 1	< 1	< 1	< 1	< 1
Dibromomethane	U	ug/l	11	< 1	< 1	< 1	< 1	< 1
1,2-Dichloropropane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
cis-1,3-Dichloro-1-propene trans-1,3-Dichloro-1-propene	U	ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
1,1,2-Trichloroethane	U	ug/l ug/l	1	< 1	<1	< 1	< 1	< 1
Dibromochloromethane	Ü	ug/l	1	< 1	<1	<1	<1	< 1
1,3-Dichloropropane	Ü	ug/l	1	< 1	<1	<1	< 1	< 1
Dibromoethane	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
Styrene	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
Propylbenzene	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
2-Chlorotoluene	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2,4-Trimethylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
4-Chlorotoluene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
t-butylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,3,5-Trimethylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1-methylpropylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
o-cymene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,3-Dichlorobenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Butylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2-Dibromo-3-chloropropane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1-2-3 - Trichlorobenzene	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Naphthalene	U	ug/l	1	< 1	< 1	4	1	< 1
1-2-4 - Trichlorobenzene	N U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,4-Dichlorobenzene 1,2-Dichlorobenzene	U	ug/l	1	< 1 < 1	< 1	< 1 < 1	< 1	< 1 < 1
Bromoform	U	ug/l ug/l	1	< 1	< 1 < 1	< 1	< 1 < 1	<1
Distribution		ug/i	1	_ `	_ \ 1		<u> </u>	

Nepoli No 10-10029								
		ELAB	Reference	145076	145077	145078	145079	145080
	Cu	stomer	Reference					
			Sample ID					
			mple Type	WATER	WATER	WATER	WATER	WATER
		•	e Location	WS02	WS08	WS11	WS12	Stream
	5		Depth (m)	2.33	4.05	2.26	0.88	0.88
		Sam	pling Date	30/07/2018	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Determinand	Codes	Units	LOD					
SVOC								
Phenol	N	ug/l	1	1.80	< 1.00	< 1.00	1.48	< 1.00
Aniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Bis(2-chloroethyl)ether	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Chlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,3-Dichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,4-Dichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Benzyl Alcohol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,2-Dichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Methylphenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Bis(2-chloroisopropyl)ether	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
3 and 4-methylphenol	N	ug/l	1	8.25	16.4	< 1.00	22.2	< 1.00
N-Nitrosodi-n-propylamine	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Hexachloroethane	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Nitrobenzene	N N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Isophorone 2-Nitrophenol	N	ug/l	1	< 1.00 < 1.00				
2,4-Dimethylphenol	N	ug/l ug/l	1	1.86	< 1.00	< 1.00	17.8	< 1.00
Bis(2-chloroethoxy)methane	N	ug/l	1	3.35	< 1.00	< 1.00	< 1.00	< 1.00
2,4-Dichlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,3,5-Trichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Naphthalene	N	ug/l	0.01	16.7	0.16	0.36	1.29	0.11
3-Chloroaniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Hexachloro-1,3-butadiene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
4-Chloro-3-methylphenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Methynaphthalene	N	ug/l	1	13.7	< 1.00	< 1.00	< 1.00	< 1.00
1-Methylnaphthalene	N	ug/l	1	20.2	< 1.00	< 1.00	< 1.00	< 1.00
Hexachlorocyclopentadiene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4,6-Trichlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4,5-Trichlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-Chloronaphthalene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Nitroaniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00 < 1.00	< 1.00
1,4-Dinitrobenzene	N N	ug/l	1	< 1.00 < 1.00	< 1.00 < 1.00	< 1.00 < 1.00	< 1.00	< 1.00 < 1.00
Dimethyl phthalate 1-3-dinitrobenzene	N	ug/l ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-6-dinitrotoluene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Acenaphthylene	N	ug/l	0.01	58.4	0.18	0.20	0.23	0.11
1,2-Dinitrobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
3-Nitroaniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Acenaphthene	N	ug/l	0.01	157	0.07	0.08	0.35	0.02
4-nitrophenol	N	ug/l	1	4.69	< 1.00	< 1.00	< 1.00	< 1.00
Dibenzofuran	N	ug/l	1	44.3	< 1.00	< 1.00	< 1.00	< 1.00
2,3,5,6-Tetrachlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,3,4,6-Tetrachlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Diethyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-chloro-4-phenoxybenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Fluorene	N	ug/l	0.01	157	0.02	0.10	0.13	0.03
4-Nitroaniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Dinitro-o-cresol	N N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Diphenylamine Azobenzene	N N	ug/l ug/l	1	7.29	< 1.00	< 1.00 < 1.00	< 1.00 < 1.00	< 1.00
1-bromo-4-phenoxybenzene	N N	ug/l ug/l	1	< 1.00 < 1.00	< 1.00 < 1.00	< 1.00	< 1.00	< 1.00 < 1.00
Hexachlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Pentachlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
				N are not UK			` 1.00	1.00

Report No.: 18-18829								
		ELAB	Reference	145076	145077	145078	145079	145080
	Cu	stomer	Reference					
		,	Sample ID					
			mple Type	WATER	WATER	WATER	WATER	WATER
			e Location	WS02	WS08	WS11	WS12	Stream
	5	Sample	Depth (m)	2.33	4.05	2.26	0.88	0.88
		Sam	pling Date	30/07/2018	30/07/2018	30/07/2018	30/07/2018	30/07/20
Determinand	Codes	Units	LOD					
SVOC	-							
Phenanthrene	N	ug/l	0.01	690	0.12	0.49	0.34	0.05
Anthracene	N	ug/l	0.01	168	0.09	0.26	0.20	0.03
Carbazole	N	ug/l	1	61.5	< 1.00	< 1.00	3.97	< 1.00
Dibutyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Fluoranthene	N	ug/l	0.01	1240	0.25	0.81	0.62	0.09
Pyrene	N	ug/l	0.01	1040	0.23	0.70	0.60	0.08
Butyl benzyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Bis-2-ethylhexyladipate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Butyl benzyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(a)anthracene	N	ug/l	0.01	872	0.16	0.41	0.23	0.06
Chrysene	N	ug/l	0.01	491	0.17	0.38	0.25	0.05
Bis(2-ethylhexyl)phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(b)fluoranthene	N	ug/l	0.01	290	0.19	0.40	0.33	0.04
Benzo(k)fluoranthene	N	ug/l	0.01	444	0.15	0.36	0.68	0.05
Benzo(a)pyrene	N	ug/l	0.01	539	0.17	0.41	0.60	0.05
Indeno(1,2,3-CD)pyrene	N	ug/l	0.01	458	0.10	0.24	0.36	0.03
Dibenz(ah)anthracene	N	ug/l	0.01	136	0.05	0.10	0.23	0.01
Benzo(ghi)perylene	N	ug/l	0.01	339	0.12	0.28	0.46	0.04

Method Summary Report No.: 18-18829

		Analysis Undertaken	Date	Method	
Parameter	Codes	On	Tested	Number	Technique
Water					
Aliphatic/Aromatic hydrocarbons in water	N		03/08/2018		GC-FID
Aromatic hydrocarbons in water	N		03/08/2018		GC-FID
Phenols in waters	N		02/08/2018		HPLC
Dissolved metals by ICP in waters	U		02/08/2018	101	ICPMS
Dissolved organic carbon	U		03/08/2018	102	IR
pH of waters	U		02/08/2018	113	Electromeric
Chromium Hexavalent in waters	U		02/08/2018	123	Colorimetry
PAHs and/or PCBs in waters	N		02/08/2018	135	GC-MS
Electrical conductivity of water	U		03/08/2018	136	Electromeric
BOD	N		07/08/2018	142	5 Day
COD (Chemical Oxygen Demand in waters)	N		03/08/2018	143	Colorimetry
Ammonia in waters	N		02/08/2018	151	Colorimetry
SVOC in waters	N		02/08/2018	167	GC-MS
Low range Aliphatic hydrocarbons water	N		02/08/2018	200	GC-MS
Low range Aromatic hydrocarbons water	N		02/08/2018	200	GC-MS
VOC in waters	U		01/08/2018	200	GC-MS
Elemental Sulphur by HPLC in waters	N		03/08/2018	206	HPLC
DO (Dissolved Oxygen) in waters	U		03/08/2018	211	Electromeric
Aliphatic hydrocarbons in water	N		02/08/2018	215	GC-FID
Aromatic hydrocarbons in water	N		02/08/2018	215	GC-FID
Anions	U		02/08/2018	270	Ion Chromatography

Tests marked N are not UKAS accredited

Report Information

Report No.: 18-18829

Key

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

Soil sample results are expressed on an air dried basis (dried at < 30°C)

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request

Deviation Codes

a No date of sampling supplied	ed
--------------------------------	----

- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618 Facsimile: (01424) 729911 info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 18-19034

Issue: 1

Date of Issue: 20/08/2018

Contact: Tobias Smith

Customer Details: GESL

Unit 7

Danworth Farm Hurstpierpoint West Sussex BN6 9GL

Quotation No: Q14-00021

Order No: Not Supplied

Customer Reference: GE17326

Date Received: 13/08/2018

Date Approved: 20/08/2018

Details: Evergreen Farm, East Grinstead

Approved by:

John Wilson, Operations Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683)

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
146424	WS02 2.32	10/08/2018	13/08/2018		
146425	WS08 4.27	10/08/2018	13/08/2018		
146426	WS11 2.65	10/08/2018	13/08/2018		
146427	WS12 1.00	10/08/2018	13/08/2018		
146428	Stream 2 Surface	10/08/2018	13/08/2018		

Total Monohydric Phenols

results Guillinary 200	5							
Report No.: 18-19034								
•		ELAB	Reference	146424	146425	146426	146427	146428
	(Reference					
	·		Sample ID					
			•		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	14/ATED	\\\ATED	__\A
			mple Type		WATER	WATER	WATER	WATER
		Sampl	e Location	WS02	WS08	WS11	WS12	Stream 2
		Sample	Depth (m)	2.32	4.27	2.65	1.00	Surface
		Sam	pling Date	10/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018
Determinand	Codes	Units	LOD					
Dissolved Metals								
Arsenic	U	ug/l	5	9	6	11	20	< 5
Boron	N	ug/l	5	242	91	240	981	161
Barium	U	ug/l	5	122	60	161	212	31
Beryllium	U	ug/l	5	< 5	< 5	< 5	< 5	< 5
Cadmium	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Chromium	U	ug/l	5	< 5	< 5	< 5	< 5	< 5
Copper	U	ug/l	5	< 5	< 5	< 5	< 5	< 5
Mercury	U	ug/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	U	ug/l	5	< 5	21	11	7	< 5
Lead	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Selenium	U	ug/l	5	< 5	< 5	8	< 5	< 5
Vanadium	N	ug/l	5	< 5	< 5	< 5	< 5	< 5
Zinc	U	ug/l	5	< 5	9	< 5	< 5	16
Anions								
Chloride	U	mg/l	0.5	25.2	101	190	191	61.6
Nitrite	U	mg/l	1	< 1.0	< 1.0	< 1.0	< 1.0	1.2
Nitrate	U	mg/l	0.5	0.6	< 0.5	< 0.5	< 0.5	1.9
Sulphate	U	mg/l	0.5	0.8	19.9	0.8	21.3	35.6
Inorganics								
Elemental Sulphur	N	mg/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ammoniacal Nitrogen as N	N	mg/l	0.1	5.8	1.2	29	29	0.3
Hexavalent Chromium	U	ug/l	100	< 100	< 100	< 100	< 100	< 100
Ammonia as NH4	N	mg/l	0.1	9.0	1.9	45	45	0.5
Sulphide	N	mg/l	0.1	0.1	0.1	0.1	< 0.1	0.1
Miscellaneous								
Biochemical Oxygen Demand (5 day)	N	mg/l	2	19	49	23	24	22
Chemical Oxygen Demand	N	mg/l	2	46	240	220	140	370
Electrical Conductivity	U	uS/cm	1	1280	1150	1390	1920	866
Dissolved organic carbon	U	mg/l	1.5	26	77	89	65	21
Dissolved Oxygen	U	mg/l	0.1	2.4	5.5	5.3	1.9	5.3
pH	U	pH units	0.1	7.4	7.2	7.2	7.7	7.9
Phenols								
Phenol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
M,P-Cresol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
O-Cresol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
3,4-Dimethylphenol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
2,3-Dimethylphenol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
2,3,5-trimethylphenol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Total Manakudria Dhanala	N.	//	4	4	4	4	4	. 4

< 1

< 1

< 1

< 1

< 1

N

ug/l

Polyaromatic hydrocarbons

Results Summary

Report No.: 18-19034

Determinand

Naphthalene GCMS

Acenaphthylene GCMS

Acenaphthene GCMS

Phenanthrene GCMS

Anthracene GCMS

Pyrene GCMS

Chrysene GCMS

Fluoranthene GCMS

Benzo (a) anthracene GCMS

Benzo (b) fluoranthene GCMS

Benzo (k) fluoranthene GCMS

Indeno (1,2,3-cd) pyrene GCMS

Dibenzo(a,h)anthracene GCMS

Benzo (a) pyrene GCMS

Benzo(ghi)perylene GCMS

Total PAH(16) GCMS

TPH CWG >C5-C6 Aliphatic

>C6-C8 Aliphatic

>C8-C10 Aliphatic

>C10-C12 Aliphatic

>C12-C16 Aliphatic

>C16-C21 Aliphatic

>C21-C35 Aliphatic

>C35-C40 Aliphatic

>C5-C7 Aromatic

>C7-C8 Aromatic

>C8-C10 Aromatic

>C10-C12 Aromatic

>C12-C16 Aromatic

>C16-C21 Aromatic

>C21-C35 Aromatic

>C35-C40 Aromatic

Total (>C5-C40) Aromatic

Total (>C5-C40) Ali/Aro

Total (>C5-C40) Aliphatic

Fluorene GCMS

146424 146425 146426 146427 146428 **ELAB Reference** Customer Reference Sample ID Sample Type WATER WATER WATER WATER WATER WS02 Sample Location WS08 WS11 WS12 Stream 2 Sample Depth (m) 2.32 4.27 2.65 1.00 Surface Sampling Date 10/08/2018 10/08/2018 10/08/2018 10/08/2018 10/08/2018 Codes Units LOD 0.01 0.69 0.12 1.65 4.45 ug/l 0.11 Ν ug/l 0.01 2.43 0.29 0.12 0.25 0.20 N 0.01 9.46 0.45 0.27 0.10 3.43 ug/l N 0.01 9.73 0.39 0.16 1.77 0.06 ug/l N ug/l 0.01 22.5 1.63 0.42 2.68 0.57 Ν ug/l 0.01 7.09 0.50 0.22 0.69 0.27 0.01 44.9 3.72 0.60 2.22 2.89 Ν ug/l N ug/l 0.01 34.9 2.80 0.47 1.65 2.57 Ν 0.01 21.3 2.14 0.36 0.94 2.14 ug/l N ug/l 0.01 17.0 1.39 0.25 0.66 1.56 N 0.01 0.93 1.82 21.4 2.13 0.37 ug/l Ν 0.01 19.0 1.51 0.28 0.73 1.83 ug/l Ν 0.01 22.2 2.29 0.40 1.02 2.25 ug/l Ν 0.01 19.7 1.52 0.28 0.75 1.48 ug/l 0.70 0.71 Ν ug/l 0.01 10.5 0.12 0.37 Ν 0.01 21.7 1.61 0.29 0.87 1.61 ug/l N 23.4 0.01 6.27 20.2 ug/l 284 23.2 N 1 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ug/l N < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ug/l 1 Ν ug/l 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 Ν ug/l 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 N 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l Ν 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 ug/l < 5.0 < 5.0 < 5.0 Ν ug/l 5 < 5.0 < 5.0 Ν 5 ug/l < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 5 < 5.0 < 5.0 < 5.0 < 5.0 Ν < 5.0 ug/l < 1.0 Ν 1 < 1.0 < 1.0 < 1.0 < 1.0 ug/l Ν 1 < 1.0 < 1.0 25.5 < 1.0 < 1.0 ug/l N < 5.0 ug/l 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 Ν 5 < 5.0 < 5.0 < 5.0 < 5.0 ug/l N 5 < 5.0 < 5.0 < 5.0 < 5.0 ug/l < 5.0 5 Ν ug/l < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 5 < 5.0 Ν 222 < 5.0 < 5.0 ug/l

5

5

5

< 5.0

222

222

< 5.0

< 5.0

< 5.0

< 5.0

25.5

25.5

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

Ν

Ν

N

ug/l

ug/l

ug/l

Neport No.: 10-13034								
	ELAB Reference			146424	146425	146426	146427	146428
	Cu	stomer	Reference					
			Sample ID					
			mple Type	WATER	WATER	WATER	WATER	WATER
		Sampl	e Location	WS02	WS08	WS11	WS12	Stream 2
	;	Sample	Depth (m)	2.32	4.27	2.65	1.00	Surface
	Sampling Date			10/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018
Determinand	Codes	Units	LOD					
VOC	Jours	Omio						
		/1	4	4	- 4		. 4	
MTBE	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Heptane Octane	N N	ug/l ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1
Nonane	N	ug/l	1	<1	<1	< 1	< 1	< 1
Benzene	U	ug/l	1	<1	<1	<1	<1	< 1
Toluene	U	ug/l	1	< 1	<1	26	<1	<1
Ethylbenzene	Ü	ug/l	1	< 1	<1	< 1	<1	<1
m+p-xylene	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
o-xylene	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
cis-1,2-dichloroethene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1-Dichloroethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Chloroform	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Tetrachloromethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1,1-Trichloroethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1,1,2-Tetrachloroethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroetha	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Bromobenzene Bromodichloromethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
	U	ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1
Methylethylbenzene 1,1-Dichloro-1-propene	U	ug/l ug/l	1	< 1	<1	< 1	< 1	<1
Trans - 1-2 -dichloroethylene	U	ug/l	1	<1	<1	< 1	<1	< 1
2,2-Dichloropropane	N	ug/l	1	< 1	<1	<1	< 1	< 1
Bromochloromethane	N	ug/l	1	< 1	<1	< 1	< 1	< 1
1,2-Dichloroethane	U	ug/l	1	< 1	<1	< 1	< 1	< 1
Dibromomethane	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2-Dichloropropane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
cis-1,3-Dichloro-1-propene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
trans-1,3-Dichloro-1-propene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1,2-Trichloroethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Dibromochloromethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,3-Dichloropropane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Dibromoethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Styrene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Propylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
2-Chlorotoluene 1,2,4-Trimethylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
4-Chlorotoluene	U	ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1
t-butylbenzene	U	ug/l ug/l	1	< 1	<1	< 1	< 1	<1
1,3,5-Trimethylbenzene	Ü	ug/l	1	< 1	<1	< 1	< 1	< 1
1-methylpropylbenzene	Ü	ug/l	1	< 1	<1	< 1	< 1	< 1
o-cymene	U	ug/l	1	<1	<1	< 1	< 1	< 1
1,3-Dichlorobenzene	Ū	ug/l	1	< 1	<1	< 1	< 1	< 1
Butylbenzene	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2-Dibromo-3-chloropropane	Ū	ug/l	1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	Ü	ug/l	1	< 1	< 1	< 1	< 1	< 1
1-2-3 - Trichlorobenzene	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Naphthalene	U	ug/l	1	< 1	< 1	2	5	< 1
1-2-4 - Trichlorobenzene	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,4-Dichlorobenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2-Dichlorobenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Bromoform	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
								_

poiltiness its items								
		ELAB	Reference	146424	146425	146426	146427	146428
	Cu	stomer	Reference					
			Sample ID					
				WATER	\A/ATED	WATER	WATER	NA/ATED
			mple Type	WATER	WATER	WATER	WATER	WATER
		Sampl	e Location	WS02	WS08	WS11	WS12	Stream 2
	;	Sample	Depth (m)	2.32	4.27	2.65	1.00	Surface
		Sam	pling Date	10/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018
Determinand	Codes	Units	LOD					
SVOC	1 00000	J						
Phenol	l NI	/1	1	< 1.00	. 1.00	< 1.00	< 1.00	. 1.00
Aniline	N	ug/l	1	< 1.00	< 1.00 3.41	< 1.00	< 1.00	< 1.00 < 1.00
Bis(2-chloroethyl)ether	N	ug/l ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Chlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,3-Dichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,4-Dichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Benzyl Alcohol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,2-Dichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Methylphenol	N	ug/l	1	< 1.00	< 1.00	1.69	< 1.00	< 1.00
Bis(2-chloroisopropyl)ether	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
3 and 4-methylphenol	N	ug/l	1	3.16	< 1.00	27.3	1.06	< 1.00
N-Nitrosodi-n-propylamine	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Hexachloroethane	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Nitrobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Isophorone	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Nitrophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4-Dimethylphenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Bis(2-chloroethoxy)methane	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4-Dichlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,3,5-Trichlorobenzene	N N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00 0.12
Naphthalene 3-Chloroaniline	N	ug/l	0.01	0.75 < 1.00	0.14 < 1.00	1.86 < 1.00	4.69 < 1.00	< 1.00
Hexachloro-1,3-butadiene	N	ug/l ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
4-Chloro-3-methylphenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Methynaphthalene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-Methylnaphthalene	N	ug/l	1	< 1.00	< 1.00	< 1.00	1.66	< 1.00
Hexachlorocyclopentadiene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4,6-Trichlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4,5-Trichlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-Chloronaphthalene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Nitroaniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,4-Dinitrobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Dimethyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-3-dinitrobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-6-dinitrotoluene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Acenaphthylene	N	ug/l	0.01	2.00	0.23	0.09	0.20	0.15
1,2-Dinitrobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
3-Nitroaniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Acenaphthene	N	ug/l	0.01	10.0	0.47	0.24	3.47	0.11
4-nitrophenol	N N	ug/l	1	< 1.00 2.11	< 1.00	< 1.00	< 1.00	< 1.00
Dibenzofuran 2,3,5,6-Tetrachlorophenol	N	ug/l	1		< 1.00	< 1.00 < 1.00	1.07	< 1.00
2,3,4,6-Tetrachlorophenol	N	ug/l ug/l	1	< 1.00 < 1.00	< 1.00 < 1.00	< 1.00	< 1.00 < 1.00	< 1.00 < 1.00
Diethyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-chloro-4-phenoxybenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Fluorene	N	ug/l	0.01	8.47	0.33	0.13	1.52	0.07
4-Nitroaniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Dinitro-o-cresol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Diphenylamine	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Azobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-bromo-4-phenoxybenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Hexachlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Pentachlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
	-	Т		VI are not LIK	AC			

Keport No 10-13034								
		ELAB	Reference	146424	146425	146426	146427	146428
	Cu	stomer	Reference					
			Sample ID					
		Sa	mple Type	WATER	WATER	WATER	WATER	WATER
			e Location	WS02	WS08	WS11	WS12	Stream 2
			Depth (m)		4.27	2.65	1.00	Surface
	•							
				10/08/2018	10/08/2018	10/08/2018	10/08/2018	10/08/2018
Determinand	Codes	Units	LOD					
SVOC								
Phenanthrene	N	ug/l	0.01	20.2	1.38	0.37	2.31	0.48
Anthracene	N	ug/l	0.01	5.25	0.37	0.16	0.50	0.19
Carbazole	N	ug/l	1	2.32	< 1.00	< 1.00	5.72	< 1.00
Dibutyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Fluoranthene	N	ug/l	0.01	43.5	2.90	0.46	1.71	2.27
Pyrene	N	ug/l	0.01	35.1	2.41	0.40	1.34	2.12
Butyl benzyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Bis-2-ethylhexyladipate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Butyl benzyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(a)anthracene	N	ug/l	0.01	15.1	1.23	0.21	0.51	1.17
Chrysene	N	ug/l	0.01	16.2	1.25	0.22	0.58	1.38
Bis(2-ethylhexyl)phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Benzo(b)fluoranthene	N	ug/l	0.01	17.1	0.85	0.21	0.47	0.81
Benzo(k)fluoranthene	N	ug/l	0.01	14.8	1.02	0.19	0.46	1.16
Benzo(a)pyrene	N	ug/l	0.01	19.0	1.11	0.19	0.49	1.08
Indeno(1,2,3-CD)pyrene	N	ug/l	0.01	11.3	0.52	0.09	0.27	0.52
Dibenz(ah)anthracene	N	ug/l	0.01	4.75	0.24	0.04	0.12	0.20
Benzo(ghi)perylene	N	ug/l	0.01	14.5	0.70	0.11	0.37	0.72

Method Summary Report No.: 18-19034

Parameter	Codes	Analysis Undertaken	Date	Method	Tachnique
Parameter	Codes	On	Tested	Number	Technique
Water					
Aliphatic/Aromatic hydrocarbons in water	N		17/08/2018		GC-FID
Aromatic hydrocarbons in water	N		17/08/2018		GC-FID
Phenols in waters	N		15/08/2018		HPLC
Dissolved metals by ICP in waters	U		15/08/2018	101	ICPMS
Dissolved organic carbon	U		16/08/2018	102	IR
pH of waters	U		15/08/2018	113	Electromeric
Chromium Hexavalent in waters	U		17/08/2018	123	Colorimetry
PAHs and/or PCBs in waters	N		16/08/2018	135	GC-MS
Electrical conductivity of water	U		15/08/2018	136	Electromeric
BOD	N		20/08/2018	142	5 Day
COD (Chemical Oxygen Demand in waters)	N		16/08/2018	143	Colorimetry
Ammonia in waters	N		15/08/2018	151	Colorimetry
SVOC in waters	N		16/08/2018	167	GC-MS
Low range Aliphatic hydrocarbons water	N		15/08/2018	200	GC-MS
Low range Aromatic hydrocarbons water	N		15/08/2018	200	GC-MS
VOC in waters	U		14/08/2018	200	GC-MS
Elemental Sulphur by HPLC in waters	N		16/08/2018	206	HPLC
DO (Dissolved Oxygen) in waters	U		15/08/2018	211	Electromeric
Aliphatic hydrocarbons in water	N		16/08/2018	215	GC-FID
Aromatic hydrocarbons in water	N		16/08/2018	215	GC-FID
Anions	U		15/08/2018	270	Ion Chromatography

Tests marked N are not UKAS accredited

Report Information

Report No.: 18-19034

Key

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

Soil sample results are expressed on an air dried basis (dried at < 30°C)

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request

Deviation Codes

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

Unit A2 Windmill Road **Ponswood Industrial Estate** St Leonards on Sea **East Sussex TN38 9BY**

Telephone: (01424) 718618 Facsimile: (01424) 729911 info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 18-19292

1 Issue:

Date of Issue: 06/09/2018

Tobias Smith Contact:

Customer Details: GESL

Unit 7

Danworth Farm Hurstpierpoint West Sussex BN6 9GL

Quotation No: Q14-00021

Order No: Not Supplied

Customer Reference: GE17326

Date Received: 29/08/2018

Date Approved: 06/09/2018

Details: Evergreen Farm, East Grinstead

Approved by:

John Wilson, Operations Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683)

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
148277	Stream 2 Surface	24/08/2018	29/08/2018		
148278	WS02 2.36	24/08/2018	29/08/2018		
148279	WS08 4.26	24/08/2018	29/08/2018		
148280	WS11 2.65	24/08/2018	29/08/2018		
148281	WS12 1.15	24/08/2018	29/08/2018		

Report No.: 18-19292						Г	Г	I
		ELAB	Reference	148277	148278	148279	148280	148281
	(Customer	Reference					
		;	Sample ID					
		Sa	mple Type	WATER	WATER	WATER	WATER	WATER
			e Location		WS02	WS08	WS11	WS12
			Depth (m)		2.36	4.26	2.65	1.15
	Sampling Date 2							
Determinand	Codes	Units	LOD	24/00/2010	24/00/2010	24/00/2010	24/00/2010	24/00/2010
	Codes	Units	LOD					
Dissolved Metals			_	_	- 10			- 10
Arsenic	U	ug/l	5	< 5	18	6	14	19
Boron	N	ug/l	5	147	231	102	238	1010
Barium	U	ug/l	5	27	160	88	150	247
Beryllium Cadmium	U	ug/l ug/l	5 1	< 5 < 1				
Chromium	U	ug/l ug/l	5	< 5	< 1 < 5	< 5	< 5	< 5
Copper	U	ug/l	5	< 5	< 5	< 5	< 5	< 5
Mercury	U	ug/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	Ü	ug/l	5	< 5	< 5	12	7	6
Lead	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Selenium	U	ug/l	5	< 5	< 5	< 5	10	< 5
Vanadium	N	ug/l	5	< 5	< 5	< 5	< 5	< 5
Zinc	U	ug/l	5	< 5	< 5	< 5	< 5	< 5
Anions								
Chloride	U	mg/l	0.5	48.9	23.1	101	166	145
Nitrite	U	mg/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Nitrate	U	mg/l	0.5	0.9	< 0.5	< 0.5	< 0.5	< 0.5
Sulphate	U	mg/l	0.5	15.5	< 0.5	34.0	< 0.5	10.4
Inorganics								
Elemental Sulphur	N	mg/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ammoniacal Nitrogen as N	N	mg/l	0.1	0.4	12	8.2	62	33
Hexavalent Chromium	U	ug/l	100	< 100	< 100	< 100	< 100	< 100
Ammonia as NH4	N	mg/l	0.1	0.6	19	13	96	51
Sulphide	N	mg/l	0.1	< 0.1	0.4	< 0.1	< 0.1	< 0.1
Miscellaneous								
Biochemical Oxygen Demand (5 day)	N	mg/l	2	48	110	45	41	25
Chemical Oxygen Demand	N	mg/l	2	560	1500	290	310	190
Electrical Conductivity	U	uS/cm	11	870	1320	1250	1430	1890
Dissolved organic carbon	U	mg/l	1.5	22	36	73	98	55
Dissolved Oxygen	U	mg/l	0.1	7.2	2.6	3.9	2.8	3.9
pH Dhanala	U	pH units	0.1	8.0	7.2	7.1	6.9	7.6
Phenois	1							
Phenol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
M,P-Cresol	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
O-Cresol 3,4-Dimethylphenol	N N	ug/l	1	< 1	< 1	< 1	<1	< 1
2,3-Dimethylphenol	N	ug/l ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
2,3,5-trimethylphenol	N	ug/l	1	< 1	< 1	<1	<1	< 1
Total Monohydric Phenols	N	ug/i	1	< 1	< 1	< 1	<1	< 1

Report No.: 18-19292								1
		ELAB	Reference	148277	148278	148279	148280	148281
	C	ustomer	Reference					
			Sample ID					
			Imple Type	WATER	WATER	WATER	WATER	WATE
			le Location		WS02	WS08	WS11	WS12
		•						
			Depth (m)		2.36	4.26	2.65	1.15
		Sam	pling Date	24/08/2018	24/08/2018	24/08/2018	24/08/2018	24/08/20
Determinand	Codes	Units	LOD					
Polyaromatic hydrocarbons								
Naphthalene GCMS	N	ug/l	0.01	0.04	0.33	0.11	1.38	4.38
Acenaphthylene GCMS	N	ug/l	0.01	0.10	0.86	0.17	0.14	0.22
Acenaphthene GCMS	N	ug/l	0.01	0.02	2.64	0.10	0.26	3.47
Fluorene GCMS	N	ug/l	0.01	0.01	2.74	0.06	0.13	1.64
Phenanthrene GCMS	N	ug/l	0.01	0.17	8.74	0.42	0.32	2.23
Anthracene GCMS	N	ug/l	0.01	0.13	2.53	0.21	0.25	0.62
Fluoranthene GCMS	N	ug/l	0.01	0.98	18.4	1.22	0.40	1.51
Pyrene GCMS	N	ug/l	0.01	0.92	14.6	1.06	0.34	1.11
Benzo (a) anthracene GCMS	N	ug/l	0.01	0.52	7.83	0.71	0.21	0.50
Chrysene GCMS	N	ug/l	0.01	0.61	6.41	0.63	0.18	0.41
Benzo (b) fluoranthene GCMS	N	ug/l	0.01	0.48	5.73	0.61	0.17	0.40
Benzo (k) fluoranthene GCMS	N	ug/l	0.01	0.61	6.88	0.69	0.20	0.43
Benzo (a) pyrene GCMS	N	ug/l	0.01	0.50	7.41	0.72	0.21	0.46
Indeno (1,2,3-cd) pyrene GCMS	N	ug/l	0.01	0.22	3.56	0.35	0.10	0.23
Dibenzo(a,h)anthracene GCMS	N	ug/l	0.01	0.09	1.35	0.16	0.04	0.10
Benzo(ghi)perylene GCMS	N	ug/l	0.01	0.34	4.75	0.50	0.14	0.34
Total PAH(16) GCMS	N	ug/l	0.01	5.75	94.8	7.71	4.50	18.1
TPH CWG			•					
>C5-C6 Aliphatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C6-C8 Aliphatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C8-C10 Aliphatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C10-C12 Aliphatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C12-C16 Aliphatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C16-C21 Aliphatic	N	ug/l	5	< 5.0	13.2	< 5.0	< 5.0	< 5.0
>C21-C35 Aliphatic	N	ug/l	5	14.7	113	10.6	< 5.0	12.3
>C35-C40 Aliphatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5-C40) Aliphatic	N	ug/l	5	14.7	127	10.6	< 5.0	12.3
>C5-C7 Aromatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C7-C8 Aromatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	12.2	< 1.0
>C8-C10 Aromatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C10-C12 Aromatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	12.6
>C12-C16 Aromatic	N	ug/l	5	< 5.0	12.4	< 5.0	< 5.0	18.3
>C16-C21 Aromatic	N	ug/l	5	< 5.0	39.4	< 5.0	< 5.0	13.0
>C21-C35 Aromatic	N	ug/l	5	< 5.0	157	< 5.0	< 5.0	< 5.0
>C35-C40 Aromatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5-C40) Aromatic	N	ug/l	5	< 5.0	209	< 5.0	12.2	43.8
Total (>C5-C40) Ali/Aro	N	ug/l	5	14.7	336	10.6	12.2	56.1

Report No.: 18-19292								
• • • • • • • • • • • • • • • • • • • •		ELAB	Reference	148277	148278	148279	148280	148281
	Cu	stomer	Reference					
			Sample ID					
			mple Type	WATER	WATER	WATER	WATER	WATER
		Sampl	e Location	Stream 2	WS02	WS08	WS11	WS12
		Sample	Depth (m)	Surface	2.36	4.26	2.65	1.15
					24/08/2018			
Determinand	Codes		LOD			_ ,, _ , _ , _ , _ , _ ,		
VOC	Todaco	Omio						
MTBE	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Heptane	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Octane	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Nonane	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Benzene Toluene	U	ug/l ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 12	< 1 < 1
Ethylbenzene	U	ug/l	1	<1	<1	< 1	< 1	<1
m+p-xylene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
o-xylene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
cis-1,2-dichloroethene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1-Dichloroethane Chloroform	U	ug/l ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
Tetrachloromethane	U	ug/l	1	<1	<1	< 1	<1	<1
1,1,1-Trichloroethane	Ü	ug/l	1	< 1	< 1	< 1	< 1	< 1
Trichloroethylene	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
Tetrachloroethylene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1,1,2-Tetrachloroethane	U N	ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	<1 <1
Chlorobenzene	U	ug/l ug/l	1	<1	< 1	< 1	<1	2
Bromobenzene	Ü	ug/l	1	<1	< 1	< 1	< 1	< 1
Bromodichloromethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Methylethylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,1-Dichloro-1-propene Trans - 1-2 -dichloroethylene	U	ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
2,2-Dichloropropane	N	ug/l ug/l	1	<1	<1	<1	<1	<1
Bromochloromethane	N	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2-Dichloroethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Dibromomethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2-Dichloropropane	U	ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
trans-1,3-Dichloro-1-propene	U	ug/l ug/l	1	<1	< 1	< 1	<1	< 1
1,1,2-Trichloroethane	Ü	ug/l	1	<1	< 1	< 1	< 1	<1
Dibromochloromethane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,3-Dichloropropane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Dibromoethane	U	ug/l	1	<1	< 1	< 1	<1	< 1
Styrene Propylbenzene	U	ug/l ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
2-Chlorotoluene	U	ug/l	1	<1	<1	< 1	<1	<1
1,2,4-Trimethylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
4-Chlorotoluene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
t-butylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,3,5-Trimethylbenzene	U	ug/l ug/l	1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
o-cymene	U	ug/l	1	<1	<1	< 1	<1	< 1
1,3-Dichlorobenzene	Ü	ug/l	1	< 1	< 1	< 1	< 1	< 1
Butylbenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2-Dibromo-3-chloropropane	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene 1-2-3 - Trichlorobenzene	U N	ug/l	1	< 1 < 1	< 1 < 1	< 1	<1	< 1
Naphthalene	U	ug/l ug/l	1	< 1	< 1	< 1 < 1	< 1 2	< 1 5
1-2-4 - Trichlorobenzene	N	ug/l	1	<1	< 1	< 1	< 1	< 1
1,4-Dichlorobenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
1,2-Dichlorobenzene	U	ug/l	1	< 1	< 1	< 1	< 1	< 1
Bromoform	U	ug/l	1	< 1	< 1	< 1	< 1	< 1

Nopolition to toroz								
		ELAB	Reference	148277	148278	148279	148280	148281
	Cu	stomer	Reference					
			Sample ID					
	Sample Type					WATER	WATER	WATER
	Sample Location				WATER WS02	WS08	WS11	WS12
			Depth (m)	Stream 2	2.36	4.26		
	3			Surface			2.65	1.15
				24/08/2018	24/08/2018	24/08/2018	24/08/2018	24/08/2018
Determinand	Codes	Units	LOD					
SVOC								
Phenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	3.64	< 1.00
Aniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Bis(2-chloroethyl)ether	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Chlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,3-Dichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,4-Dichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Benzyl Alcohol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,2-Dichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Methylphenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	1.19	< 1.00
Bis(2-chloroisopropyl)ether	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
3 and 4-methylphenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	26.1	< 1.00
N-Nitrosodi-n-propylamine	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Hexachloroethane	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Nitrobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Isophorone	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Nitrophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4-Dimethylphenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Bis(2-chloroethoxy)methane	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4-Dichlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,3,5-Trichlorobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Naphthalene	N	ug/l	0.01	0.04	0.36	0.11	1.51	4.73
3-Chloroaniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Hexachloro-1,3-butadiene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
4-Chloro-3-methylphenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Methynaphthalene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-Methylnaphthalene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	1.91
Hexachlorocyclopentadiene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4,6-Trichlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2,4,5-Trichlorophenol	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-Chloronaphthalene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-Nitroaniline	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,4-Dinitrobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Dimethyl phthalate	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1-3-dinitrobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
2-6-dinitrotoluene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Acenaphthylene	N	ug/l	0.01	0.09	0.84	0.14	0.12	0.19
1,2-Dinitrobenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00

ELAB Reference 148277 148278 148279 148280	WATER WS12 1.15 8 24/08/2018 <1.00 3.92 <1.00
Sample Location Surface 2.36 4.26 2.65	WS12 1.15 8 24/08/2018 < 1.00 3.92
Sample Type Sample Type Sample Depth (m) Surface 2.36 4.26 2.65	WS12 1.15 8 24/08/2018 < 1.00 3.92
Sample Type Sample Location Sample Depth (m) Sampling Date 24/08/2018 2	WS12 1.15 8 24/08/2018 < 1.00 3.92
Sample Depth (m) Surface 2.36 4.26 2.65	1.15 8 24/08/2018 < 1.00 3.92
Surface Codes Co	1.15 8 24/08/2018 < 1.00 3.92
Sampling Date Sampling Date 24/08/2018	<pre>3 24/08/2018</pre>
Determinand Codes Units LOD SVOC 3-Nitroaniline N ug/l 1 < 1.00	< 1.00 3.92
SVOC 3-Nitroaniline N ug/l 1 < 1.00	3.92
3-Nitroaniline N ug/l 1 < 1.00	3.92
Acenaphthene N ug/l 0.01 0.02 2.73 0.11 0.24 4-nitrophenol N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 Dibenzofuran N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 2,3,5,6-Tetrachlorophenol N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 2,3,4,6-Tetrachlorophenol N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 Diethyl phthalate N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 1-chloro-4-phenoxybenzene N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	3.92
4-nitrophenol N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00	
Dibenzofuran N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
2,3,5,6-Tetrachlorophenol N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00	
2,3,4,6-Tetrachlorophenol N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00	1.02
Diethyl phthalate N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 1-chloro-4-phenoxybenzene N ug/l 1 < 1.00	< 1.00
1-chloro-4-phenoxybenzene N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
	< 1.00
Fluorene N ug/l 0.01 0.02 2.32 0.05 0.11	< 1.00
	1.42
4-Nitroaniline N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Dinitro-o-cresol N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Diphenylamine N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Azobenzene N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
1-bromo-4-phenoxybenzene N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Hexachlorobenzene N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Pentachlorophenol N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Phenanthrene N ug/l 0.01 0.12 6.71 0.33 0.24	1.72
Anthracene N ug/l 0.01 0.08 1.74 0.15 0.15	0.40
Carbazole N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00	5.50
Dibutyl phthalate N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Fluoranthene N ug/l 0.01 0.84 15.9 1.04 0.33	1.23
Pyrene N ug/l 0.01 0.85 13.4 0.95 0.29	0.98
Butyl benzyl phthalate N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Bis-2-ethylhexyladipate N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Butyl benzyl phthalate N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Benzo(a)anthracene N ug/l 0.01 0.58 5.95 0.56 0.15	0.37
Chrysene N ug/l 0.01 0.63 6.35 0.64 0.18	0.41
Bis(2-ethylhexyl)phthalate N ug/l 1 < 1.00 < 1.00 < 1.00 < 1.00	< 1.00
Benzo(b)fluoranthene N ug/l 0.01 0.56 6.87 0.58 0.28	0.48
Benzo(k)fluoranthene N ug/l 0.01 0.64 5.40 0.64 0.18	0.37
Benzo(a)pyrene N ug/l 0.01 0.48 6.45 0.64 0.19	0.40
Indeno(1,2,3-CD)pyrene N ug/l 0.01 0.22 3.68 0.34 0.10	0.22
Dibenz(ah)anthracene N ug/l 0.01 0.09 1.36 0.15 0.04	0.09
Benzo(ghi)perylene N ug/l 0.01 0.33 4.65 0.51 0.15	0.32

Method Summary Report No.: 18-19292

<u> </u>		Analysis Undertaken	Date	Method	
Parameter	Codes	On	Tested	Number	Technique
Water					
Aliphatic/Aromatic hydrocarbons in water	N		04/09/2018		GC-FID
Aromatic hydrocarbons in water	N		04/09/2018		GC-FID
Phenols in waters	N		31/08/2018		HPLC
Dissolved metals by ICP in waters	U		31/08/2018	101	ICPMS
Dissolved organic carbon	U		04/09/2018	102	IR
pH of waters	U		31/08/2018	113	Electromeric
Chromium Hexavalent in waters	U		04/09/2018	123	Colorimetry
PAHs and/or PCBs in waters	N		03/09/2018	135	GC-MS
Electrical conductivity of water	U		31/08/2018	136	Electromeric
BOD	N		06/09/2018	142	5 Day
COD (Chemical Oxygen Demand in waters)	N		06/09/2018	143	Colorimetry
Ammonia in waters	N		03/09/2018	151	Colorimetry
SVOC in waters	N		03/09/2018	167	GC-MS
Low range Aliphatic hydrocarbons water	N		03/09/2018	200	GC-MS
Low range Aromatic hydrocarbons water	N		03/09/2018	200	GC-MS
VOC in waters	U		31/08/2018	200	GC-MS
Elemental Sulphur by HPLC in waters	N		03/09/2018	206	HPLC
DO (Dissolved Oxygen) in waters	U		31/08/2018	211	Electromeric
Aliphatic hydrocarbons in water	N		03/09/2018	215	GC-FID
Aromatic hydrocarbons in water	N		03/09/2018	215	GC-FID
Anions	U		31/08/2018	270	Ion Chromatography

Tests marked N are not UKAS accredited

Report Information

Report No.: 18-19292

Key

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

Soil sample results are expressed on an air dried basis (dried at < 30°C) Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request

Deviation Codes		
	а	No date of sampling supplied
	b	No time of sampling supplied (Waters Only)
	С	Sample not received in appropriate containers
	d	Sample not received in cooled condition
	е	The container has been incorrectly filled
	f	Sample age exceeds stability time (sampling to receipt)
	g	Sample age exceeds stability time (sampling to analysis)
	Where a sa	ample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage